Citation: |
Kai Han, Xueli Ma, Jinjuan Xiang, Hong Yang, Wenwu Wang. Effect of low temperature annealing on the electrical properties of an MOS capacitor with a HfO2 dielectric and a TiN metal gate[J]. Journal of Semiconductors, 2013, 34(11): 114007. doi: 10.1088/1674-4926/34/11/114007
****
K Han, X L Ma, J J Xiang, H Yang, W W Wang. Effect of low temperature annealing on the electrical properties of an MOS capacitor with a HfO2 dielectric and a TiN metal gate[J]. J. Semicond., 2013, 34(11): 114007. doi: 10.1088/1674-4926/34/11/114007.
|
Effect of low temperature annealing on the electrical properties of an MOS capacitor with a HfO2 dielectric and a TiN metal gate
DOI: 10.1088/1674-4926/34/11/114007
More Information
-
Abstract
The effects of low temperature annealing, such as post high-k dielectric deposition annealing (PDA), post metal annealing (PMA) and forming gas annealing (FGA) on the electrical characteristics of a metal-oxide-semiconductor (MOS) capacitor with a TiN metal gate and a HfO2 dielectric are systematically investigated. It can be found that the low temperature annealing can improve the capacitance-voltage hysteresis performance significantly at the cost of increasing gate leakage current. Moreover, FGA could effectively decrease the interfacial state density and oxygen vacancy density, and PDA could make the flat band positively shift which is suitable for P-type MOSs.-
Keywords:
- ALD HfO2,
- TiN,
- low temperature annealing,
- hysteresis
-
References
[1] Wilk G D, Wallace R M, Anthony J M. High-k gate dielectrics:current status and materials properties considerations. J Appl Phys, 2001, 89(10):5243 doi: 10.1063/1.1361065[2] Zhao Y, Toyama M, Kita K, et al. Moisture-absorption-induced permittivity deterioration and surface roughness enhancement of lanthanum oxide films on silicon. Appl Phys Lett, 2006, 88(7):072904 doi: 10.1063/1.2174840[3] Chau R, Brask J, Datta S, et al. Application of high-k gate dielectrics and metal gate electrodes to enable silicon and non-silicon logic nanotechnology. Microelectronic Eng, 2005, 80:1 doi: 10.1016/j.mee.2005.04.035[4] Chen T C, Peng C Y, Tseng C H, et al. Characterization of the ultrathin HfO2 and Hf-silicate films grown by atomic layer deposition. IEEE Trans Electron Devices, 2007, 54(4):759 doi: 10.1109/TED.2007.892012[5] Swerts J, Peys N, Nyns L, et al. Impact of precursor chemistry and process conditions on the scalability of ALD HfO2 gate dielectrics. J Electrochem Soc, 2010, 157(1):G26[6] Kadoshima M, Matsuki T, Miyazaki S, et al. Effective-work-function control by varying the TiN thickness in poly-Si/TiN gate electrodes for scaled high-k CMOS FETs. IEEE Electron Device Lett, 2009, 30(5):466 doi: 10.1109/LED.2009.2016585[7] Westlinder J, Sjöblom G, Olsson J, Variable work function in MOS capacitors utilizing nitrogen-controlled TiNx gate electrodes. Microelectron Eng, 2004, 75:389 doi: 10.1016/j.mee.2004.07.061[8] Mistry K, Allen C, Auth C, et al. A 45 nm logic technology with high-k + metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. Tech Dig-Int Electron Devices Meeting, 2007:247[9] Chatterjee S, Kuo Y, Lu J. Thermal annealing effect on electrical properties of metal nitride gate electrodes with hafnium oxide gate dielectrics in nano-metric MOS devices. Microelectron Eng, 2008, 85(1):202 doi: 10.1016/j.mee.2007.05.041[10] Choi C H, Lee K L, Narayanan V. Impact of diffusionless anneal using dynamic surface anneal on the electrical properties of a high-k/metal gate stack in metal-oxide-semiconductor devices. Appl Phys Lett, 2011, 98(12):123506 doi: 10.1063/1.3570655[11] Perera R, Ikeda A, Hattori R, et al. Effects of post annealing on removal of defect states in silicon oxynitride films grown by oxidation of silicon substrates nitrided in inductively coupled nitrogen plasma. Thin Solid Films, 2003423:212 doi: 10.1016/S0040-6090(02)01044-1[12] Weinreich W, Shariq A, Seidel K, et al. Detailed leakage current analysis of metal-insulator-metal capacitors with ZrO2, ZrO2/SiO2/ZrO2, and ZrO2/Al2O3/ZrO2 as dielectric and TiN electrodes. J Vac Sci Technol B, 2013, 31:01A109 -
Proportional views