J. Semicond. > 2016, Volume 37 > Issue 11 > 111001

INVITED REVIEW PAPERS

GaN-based green laser diodes

Lingrong Jiang1, 2, Jianping Liu1, 2, , Aiqin Tian1, 2, Yang Cheng1, 2, Zengcheng Li1, 2, Liqun Zhang1, 2, Shuming Zhang1, 2, Deyao Li1, 2, M. Ikeda1, 2 and Hui Yang1, 2

+ Author Affiliations

 Corresponding author: LiuJianping,jpliu2010@sinano.ac.cn

DOI: 10.1088/1674-4926/37/11/111001

PDF

Abstract: Recently, many groups have focused on the development of GaN-based green LDs to meet the demand for laser display. Great progresses have been achieved in the past few years even that many challenges exist. In this article, we analysis the challenges to develop GaN-based green LDs, and then the approaches to improve the green LD structure in the aspect of crystalline quality, electrical properties, and epitaxial layer structure are reviewed, especially the work we have done.

Key words: green LDsInGaNQCSEIn-rich

Semiconductor laser diodes (LDs) have tremendous influence on human's life, since they have been applied in many field such as optical fiber communication, optical data storage in the past decades. Laser display using red, green and blue (RGB) LDs as light source is an emerging display technology as it shows larger color gamut, higher color saturation, and capability for both pico-projector and larger size display. Figure 1 shows the color gamut of laser display versus other display technology. Pico-projector and televisions have been considered to be the most important market for the laser display system[1-5]. The performance of green LDs used in pico-projectors should meet the following specifications: wavelength in the range of 520 to 532 nm, a wall plug efficiency (WPE) of at least 5% at 65 ℃, reliability over more than 10 000 h and an output power exceeding 80 mW[5]. While more than 10 W light power is needed for each color for laser television with 100 inch size.

Direct blue and green emission semiconductor LDs made of GaN-based materials are desirable for laser display. However, fabrication of GaN-based green LDs is more challenging, compared to that of blue and ultraviolet LDs[6, 7]. Peak gain of GaN-based LDs decreases as emission wavelength increases from violet to green range, which results into increasing threshold current and decreasing efficiency of green LDs[8]. As early as 2001, researchers from Nichia Corporation had demonstrated InGaN multi-quantum-well structure laser diodes (MQW-LDs) with an emission wavelength of longer than 420 nm[9], but it was not until 2009 that researchers of Nichia Corp. demonstrated green (λ >500 nm) InGaN-based lasers grown on c-plane self-standing GaN substrates with lifetimes of 5000 h[10]. Nevertheless, due to the promising application in laser display, development of green LDs has attracted considerable attention of researchers, e.g. Nichia, Osram, Suzhou Institute of Nano-Tech and Nano-Bionics (Sinano), University of Michigan (UM), Sumitomo & Sony (SS), University of California Santa Barbara (UCSB) and so on. Different crystallographic orientation has been used by them as Figure 2 shows and the details of their work will be discussed later. In this paper, challenges, recent progress and outlook of green LDs will be discussed.

Figure  1.  (Color online) Color gamut in the CIE chromaticity diagram of laser, LED, LCD and CRT display.
Figure  2.  Wurtzite GaN crystallographic planes.

Optoelectronic devices based on either GaN or GaAs suffer from a steep drop of efficiency when the emission wavelength is approaching the green region[11], which is known as the "green gap". We are facing lots of challenges to develop green LDs with good performances.

No matter which orientation (c-plane,a-plane,m-plane or r-plane) is used, the first challenge is the preparation of high-quality In-rich InGaN active layers in green LDs. Around 30% In needs to be incorporated in InGaN quantum wells (QWs) to realize green LDs, which results into the formation of crystalline defects in three aspects. Firstly, as a result of weak chemical bond of In-N, the growth temperature for InGaN needs to be lowered to incorporated enough In. Consequently, both the atomic diffusion length and the decomposition efficiency of NH3 decrease at low temperature, which results into crystalline defects, fluctuation of In composition, and rough interface in InGaN QWs because growth temperature needs to be high enough to maintain a step-flow growth which is essential for a high-quality epitaxial growth[12]. Fluctuation of In composition and rough interface in InGaN QWs significantly broaden the gain spectra of green LDs[13], as shown in Figure 3. Secondly, the ideal growth temperature for p-AlGaN cladding layer is as high as 1000 ℃ to ensure low resistance. However, such high temperature is going to induce serious thermal degradation of InGaN QWs[1]. Thirdly, lattice mismatch between InGaN QWs and GaN is as large as 3.3%, which induces crystalline defects in InGaN QWs. Crystalline defects not only reduce the radiative efficiency[14], but also shorten device lifetimes[15].

Figure  3.  Optical gain spectra. The gain spectra of laser diodes broadens with the increase of the wavelength[13].

GaN-based materials with c-plane orientation are the most mature in terms of epitaxial growth. However, quantum confined Stark effect (QCSE) is a challenge to fabricate c-plane green LDs. Many literatures[16-21] have detailed reports about QCSE both experimentally and theoretically. QCSE originates from the polarization electric fields caused by both spontaneous and piezoelectric polarization charges at heterointerface [22, 23]. The polarization electric field is estimated to be more than 2 MV/cm in green InGaN QWs[24, 25]. Consequently, the overlap of e-h wavefunction is greatly reduced, as shown in Figure 4(b), which results into low luminescence efficiency.

Figure  4.  The schematic diagram of QCSE. Structure (a) is free from QCSE while structure (b) suffers from it.

Since c-plane InGaN QWs suffer from the QCSE, nonpolar (a-plane,m-plane) InGaN QWs free from QCSE and semipolar (r-plane) InGaN QWs with small QCSE are considered to have advantages to fabricate high performance green LDs[26]. Some groups (SS[27,28], UCSB[29,30]) have demonstrated their achievements in green LDs based on these planes. However, crystalline defects such as stacking fault[31] and misfit dislocations readily appear in nonpolar and semipolar InGaN QWs, which limit the application of those planes.

Figure  5.  (Color online) (a) Simulated near field for a schematic blue LD WG design. Oscillation of the field propagating in the substrate appear. (b) Measured near field pattern of a LD. Red: highest intensity, blue: lowest intensity, black: overexposed. Intensity of the mode leaking into substrate can be seen clearly[32].
Figure  6.  The decrease of refractive index difference with the increasing of indium concentration and wavelength[33].

Since the refractive index depends on wavelength, with increasing wavelength, the refractive index difference between GaN waveguide layer and AlGaN cladding layer decreases. As a result, there will be a leakage into substrate as shown in Figure 5, based on the simulation and measurement for the vertical near and far field of a given laser structure (emitting at 497 nm) demonstrated by Lermer et al.[32]. We[33] have confirmed that confinement factors of blue and green LDs are smaller with respect to that of violet LD when their device structure is similar and the results are shown in Figure 6. Particularly, the influence of ridge height, p-AlxGa1-xN composition and thickness on confinement factor and absorption loss are analyzed based on the simulation and experiment. Increasing the thickness of AlGaN, substituting InGaN for GaN as the waveguide both can suppress the leakage of light, while the lattice mismatch will be aggravated at the same time. Therefore, QCSE induced by strain may become more serious and even crack will be found in epitaxy layer, hence we are supposed to optimize the design of green LDs' structure theoretically and experimentally.

With the increasing of injection current, the slope efficiency of green LDs was found to decrease. This phenomenon is attributed to the reduction of the injection efficiency induced by carrier leakage. The electron blocking layer (EBL) has been employed to reduce the electrons leakage successfully[34]. Nevertheless, there are limited studies on hole transport properties especially at high current density. Controversial results have been reported based on different model[35-37], the details are discussed in Section 3.4.

Since the growth temperature of green InGaN QWs has to be lowered to incorporate enough In, we employ a two-temperature growth technique to grow InGaN/GaN QWs, in which the growth temperature is raised to grow GaN quantum barriers (QBs). In a two-temperature growth process, InGaN QW tends to locally decompose during temperature ramping up to QB temperature in the view of low thermal stability of InGaN, which results into rough interface and In composition fluctuation. To prevent the InGaN from decomposing as growing the GaN, a GaN cap layer is grown on top of the QW, which is shown in Figure 7. The effects of GaN cap layer thickness have been studied by us[38]. The EL full width at half maximum (FWHM) is used to characterize the extent of inhomogenous broadening and potential homogeneity in the active region. As shown in Figure 8(a), the dashed line show the tendency that the EL FWHMs of LD increased with emission wavelength, which is an indication of enhanced potential inhomogeneity as indium composition in the InGaN QWs increases[1]. The sample with 1.8 nm LT-cap shows a similar slope compared with the 2.5 nm LT-cap, which means the thickness of 1.8 nm and higher is fully enough to protect the QW from temperature ramping.

Figure  7.  (Color online) Schematic diagram of green LDs' structure with the cap layers.
Figure  8.  (Color online) (a) Wavelength dependent FWHMs of green LD structures with varying LT-cap thickness. The dashed line are guide lines to the eyes. (b) comparison of FWHMs of green LD structures from Sinano and the other work. It should be noted that the measured conditions are different for data from different groups.

As illustrated in Figure 8(b), the EL FWHM of our LD is compared with value from other groups. It should be noted that the data is dependent on the measured condition in different groups. The current density of measurement from Sinano' LDs is 10 A/cm2 under DC condition, while it is 14 A/cm2 for semipolar green LEDs reported by UCSB[39,40],150 A/cm2 for semipolar green LD structures reported by Sumitomo Electric Industries[41], PL Data are used for c-plane green LD structures of Osram[42] and Nichia[43]. It shows that FWHM value for emission wavelength of 530 nm (2.34 eV) is roughly comparable to that from others. In order to study the effect of LT-cap thickness on the microstructures of InGaN/GaN active region, HAADF-STEM measurement were carried out, as Figure 9 shows. QWs with 1.2 nm LT-cap are broken and separated InGaN islands can be observed clearly, which means the 1.2 nm LT-cap is not thick enough to protect the QW from being damaged. In contrast, for the LD structures with 2.5 nm LT-cap layer, QWs do not suffer from the temperature ramping.

Figure  9.  The STEM images of the microstructure of active region with different thickness LT-cap. (a) 2.5 nm LT-cap,(b) 1.2 nm LT-cap. (c) and (d) are magnification of the circled areas in (a) and (b), respectively. The bright lines are the InGaN (QW) and the dark region between lines are the GaN (QB).

Reference [44] has reported that the solubility of In in GaN is calculated less than 6% at 800 ℃. As result, with the increase of indium concentration, the thermal stability of InGaN QW decreases. Decomposition of InGaN and formation of In clusters will appear in the active region during p-type layer growth, which is called the thermal degradation. This problem is particularly severe in laser diode epitaxial growth since longer growth time and higher growth temperature are used to grow p-AlGaN/GaN SL cladding layer. As shown in Figure 10(a), there are high density of dark regions with different gray scales which indicates no or weak emission is detected in micro-PL images of LD caused by the thermal degradation. The different gray scales may indicate the decomposition in the top and bottom QW doesn't happen simultaneously. The less dark area marked with arrow "1" in Figure 10(a), may imply that in this region only one InGaN QW layer is degraded, but another QW layer still performs well. For the area marked with arrow "2", both top and bottom InGaN QW layers are damaged resulting in a much weaker emission.

Figure  10.  Micro PL images of (a) LD-Ⅰand (b) LD-Ⅱwith a p-type layer growth temperature 30℃ lower than that of LD-Ⅰ. (c) LD-Ⅲ, with nominally identical growth parameters as LD-Ⅱ except for a thinner LT cap layer. (d) Comparison of on-wafer EL spectra of samples LDs at 20 mA at room temperature and the inset shows normalized E

To mitigate the thermal budget to InGaN QWs, the growth temperature of p-type layers was lowered by 30 ℃ to grow LD-Ⅱ sample. Figure 10(b) shows the micro-PL image of LD-Ⅱ. Compared to LD-I, it is noted that both the size and the density of the dark spots are reduced, indicating that the decomposition of InGaN QW is suppressed to certain degree, which results from reduced thermal budget to InGaN QWs during p-type growth. In order to fully suppress the decomposition of InGaN QWs, preventing the formation of In-rich clusters is critical. Several previous works reported that growth interruption[45] or introduction of H2 after the growth of InGaN well layer[46,47] can remove In-rich InGaN clusters on the InGaN QW upper interface and enhance the thermal stability of InGaN well layer. However these approaches may blueshift the emission wavelength greatly which needs to be avoided when growing green InGaN LDs. Here we reduce the thickness of the LT cap layer which is employed to protect InGaN QW layer from evaporation during the subsequent temperature ramping process. A suitably thin LT-cap layer allows a slight evaporation of the InGaN surface without shortening the emission wavelength remarkably. Figure 10(c) shows the micro-PL image of LD-Ⅲ which has thinner LT cap layer compared to LD-Ⅱ. It is noted that the luminescence is extremely homogeneous and the dark regions disappear totally. As a result of suppression of local InGaN decomposition and improvement of luminescence homogeneity, the EL intensity of LD-Ⅱ and LD-Ⅲ are greatly enhanced by 110% and 450% compared with LD-I, as shown in Figure 10(d).

In order to suppress the thermal degradation of high indium content green InGaN/GaN QWs during the growth of p-type AlGaN cladding layers[1,48], p-type cladding layers are usually grown at a temperature lower than the optimal temperature which is higher than 1000 ℃ for AlGaN. However, p-type AlGaN grown at a low temperature often shows high resistivity due to increased defects & impurity incorporations[49-52]. Because of the chemical activity of Al, AlGaN layer grown by MOCVD usually contains higher carbon impurity concentration than GaN especially when the growth temperature is reduced than the optimal growth temperatures. We[53] have studied the dependence of carbon concentration on growth conditions. As shown in Figures 11(a),11(b) and 11(c), when the p-type AlGaN cladding layer is grown at a lower temperature to avoid the thermal degradation of the active region, the incorporation of carbon impurity will be enhanced. For example, simply reducing the growth temperature of AlGaN:Mg to 907 ℃ leads to an increase of carbon concentration to as high as 4 × 1018 cm-3. However, by adopting a lower growth rate and a higher growth pressure, p-type AlGaN with carbon concentrations less than 1× 1017 cm-3 can be achieved We have observed a correlation between carbon concentration and electrical properties of AlGaN:Mg. When the carbon concentration is higher than a certain level in the order of 1E17, there is a clear tendency that the hole concentration decrease and thus the resistivity increases as the carbon concentration increases in the samples, as shown in Fig. 11(d). The mechanism behind this was discussed in our previous paper[54].

Figure  11.  Dependence of growth conditions on carbon incorporation: (a) growth temperature,(b) growth pressure,(c) growth rate. (d) shows hole concentration and resistivity dependent on carbon concentration.
Figure  12.  (Color online) (a) The schematic diagram of structure. (b) The experimental EL spectrum. (c) The simulated EL spectrum. (d) The experimental EL spectrum with Si-doped.

Injection efficiency is one of the main factors which affect LD performance. Compared to that of electron, the effective mass[55] of hole is much heavier and the mobility[56,57] of hole is significantly lower. The severe asymmetry in carrier transport results into that holes are mainly confined in the quantum well (QW) nearest the p-side at low current density[58,59], while electron leakage[60-65] occurs easily even at low injection level of 20 A/cm2 typical for LED operation. Employing and optimizing the electron blocking layer[66-71] is an effective method to reduce electron leakage in Ⅲ-nitride LDs. On the other hand, there are limited studies on hole transport properties at high current density for LD operation (more than 1000 A/cm2, and controversy results were reported. According to the reports of Sizov et al.[72,73], piezoelectric field hinders hole transport and holes are mainly confined in the QW nearest the p-side in the c-plane InGaN-based green LDs. However, according to the reports of Hager et al.[74,75], holes can overflow from the green active region in the c-plane green LDs and recombine in the n-InGaN layer right below green active region. Zhang et al.[76] report that large amounts of holes can penetrate through seven In0.4Ga0.6N/GaN QWs with the assistance of piezoelectric field at high current density.

We have investigated the hole transport in c-plane InGaN-based green LDs by both simulations and experiments[36]. It is found that holes can overflow from the green double quantum wells (DQWs) at high current density by using a specially designed green LD structure, as shown in Figure 12(a). The active region contains four blue InGaN/GaN QWs that are used as detection layer, hence blue luminescence is supposed to be observed if the holes are transported to the region near n-side. According to the EL spectra shown in Figure 12(b), it is confirmed that holes can overflow from the green DQWs. And about 30.7% of holes recombine outside the DQWs at 1000 A/cm2 which is based on the simulation shown in Figure 12(c). It is also found that a heavily silicon-doped layer right below the green DQWs can suppress hole overflow from the green DQWs which is shown in Figure 12(d), the intensity of blue luminescence almost disappears.

Although there are so many challenges to fabricate green LDs, considerable progress has been made as we mentioned. Green LDs (λ >500 nm) have been achieved by several groups and companies such as Osram, UM, UCSB, SS, Soraa, Corning, Rohm and Sinano listed in Table 1. Nichia and Osram are leading the progresses in the development of green LDs. Both of them fabricated green LDs based on c-plane. Nichia reported high-power green LD (Pout>1 W,λ =525 nm, Jth=1.68 kA/cm2 , which shows potential to be used in large-size laser TV. Sinano has demonstrated green LDs grown on bulk GaN substrate which lases at 508 nm as shown in Figure 13(a). Figure 13(b) shows the power-current-voltage curve of a typical green LD under continuous-wave operation at room temperature. It can be shown that the threshold current density and the threshold voltage is 1.8 kA/cm2 and 4.4 V, respectively. The output power is 58 mW at 6 kA/cm2.

Table  1.  Progress of green LDs.
DownLoad: CSV  | Show Table
Figure  13.  (a) Lasing spectrum and photograph of the laser beam of the 508 nm LD. (b) Power-current curve of green LDs under continuous-wave operation.


[1]
Queren D, Schillgalies M, Avramescu A, et al. Quality and thermal stability of thin InGaN films. J Cryst Growth, 2009, 311:2933 doi: 10.1016/j.jcrysgro.2009.01.066
[2]
Schwarz U T, Scheibenzuber W G. The green laser diode:completing the rainbow. Optics & Photonics News, 2011, 22(9):38 http://cn.bing.com/academic/profile?id=2093981113&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Jansen M, Carey G P, Carico R, et al. Visible laser and laser array sources for projection display. Proceedings of SPIE, 2006, 6135:198 http://cn.bing.com/academic/profile?id=2018046147&encoded=0&v=paper_preview&mkt=zh-cn
[4]
Belyanin A A, Lutgen S, Smowton P M, et al. Progress of blue and green InGaN laser diodes. Proceedings of SPIE, 2010, 7616:76160G doi: 10.1117/12.842131
[5]
Sizov D, Bhat R, Zah C E. Gallium indium nitride-based green lasers. J Lightw Technol, 2012, 30:679 doi: 10.1109/JLT.2011.2176918
[6]
Ambacher O. Growth and applications of group Ⅲ nitrides. J Phys D, 1998, 31:2653 doi: 10.1088/0022-3727/31/20/001
[7]
Amano H. Development of GaN-based blue LEDs and metalorganic vapor phase epitaxy of GaN and related materials. Prog Cryst Growth Charact Mater, 2016, 62:126 doi: 10.1016/j.pcrysgrow.2016.04.006
[8]
Kozaki T, Matsumura H, Sugimoto Y, et al. High-power and wide wavelength range GaN-based laser diodes. Proceedings of SPIE, 2006, 6133:16 http://cn.bing.com/academic/profile?id=2083136845&encoded=0&v=paper_preview&mkt=zh-cn
[9]
Nagahama S, Yanamoto T, Sano M, et al. Wavelength dependence of InGaN laser diode characteristics. Jpn J Appl Phys, 2001, 40:3075 doi: 10.1143/JJAP.40.3075
[10]
Khan A. Laser diodes go green. Nature Photonics, 2009, 3:432 doi: 10.1038/nphoton.2009.124
[11]
Nakamura S, Senoh M, Iwasa N, et al. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn J Appl Phys, 1995, 34:L797 doi: 10.1143/JJAP.34.L797
[12]
Oliver R A, Kappers M J, Humphreys C J, et al. Growth modes in heteroepitaxy of InGaN on GaN. J Appl Phys, 2005, 97:8 http://cn.bing.com/academic/profile?id=1996520434&encoded=0&v=paper_preview&mkt=zh-cn
[13]
Kojima K, Schwarz U T, Funato M, et al. Optical gain spectra for near UV to aquamarine (Al, In)GaN laser diodes. Optics Express, 2007, 15:7730 doi: 10.1364/OE.15.007730
[14]
Yang J, Zhao D G, Jiang D S, et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes. Optics Express, 2016, 24:13824 doi: 10.1364/OE.24.013824
[15]
Follstaedt D M, Lee S R, Allerman A A, et al. Strain relaxation in AlGaN multilayer structures by inclined dislocations. J Appl Phys, 2009, 105:083507 doi: 10.1063/1.3087515
[16]
Cho Y H, Gainer G H, Fischer A J, et al. "S-shaped" temperaturedependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl Phys Lett, 1998, 73:1370 doi: 10.1063/1.122164
[17]
Bai J Z, Wang T, Sakai S. Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures. J Appl Phys, 2000, 88:4729 doi: 10.1063/1.1311831
[18]
Im J S, Off J, Sohmer A, et al. Reduction of oscillator strength due to piezoelectric fields in GaN/AlxGa1-xN quantum wells. Phys Rev B, 1998, 57:R9435 doi: 10.1103/PhysRevB.57.R9435
[19]
Peng L H, Chuang C, Lou L H. Piezoelectric effects in the optical properties of strained InGaN quantum wells. Appl Phys Lett, 1999, 74:795 doi: 10.1063/1.123370
[20]
Sala F D, Carlo A D, Lugli P, et al. Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures. Appl Phys Lett, 1999, 74:2002 doi: 10.1063/1.123727
[21]
Wang T, Bai J, Sakai S, et al. Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes. Appl Phys Lett, 2001, 78:2617 doi: 10.1063/1.1368374
[22]
Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectric constants of Ⅲ-V nitrides. Phys Rev B, 1997, 56:R10024 doi: 10.1103/PhysRevB.56.R10024
[23]
Bernardini F, Fiorentini V. Polarization fields in nitride nanostructures:10 points to think about. Appl Surf Sci, 2000, 166:23 doi: 10.1016/S0169-4332(00)00434-7
[24]
Zhang M, Moore J, Mi Z, et al. Polarization effects in selforganized InGaN/GaN quantum dots grown by RF-plasmaassisted molecular beam epitaxy. J Cryst Growth, 2009, 311:2069 doi: 10.1016/j.jcrysgro.2008.10.042
[25]
Della Sala F, Di Carlo A, Lugli P, et al. Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures. Appl Phys Lett, 1999, 74:2002 doi: 10.1063/1.123727
[26]
Huang C Y, Lin Y D, Tyagi A, et al. Optical waveguide simulations for the optimization of InGaN-based green laser diodes. J Appl Phys, 2010, 107:7 http://cn.bing.com/academic/profile?id=2013299429&encoded=0&v=paper_preview&mkt=zh-cn
[27]
Masahiro A, Yusuke Y, Yohei E, et al. Low threshold current density InGaN based 520-530 nm green laser diodes on semi-polar {2021} free-standing GaN substrates. Appl Phys Express, 2010, 3:121001 doi: 10.1143/APEX.3.121001
[28]
Yanashima K, Nakajima H, Tasai K, et al. Long-lifetime true green laser diodes with output power over 50 mW above 525 nm grown on semipolar {2021} GaN substrates. Appl Phys Express, 2012, 5:82103 doi: 10.1143/APEX.5.082103
[29]
Hardy M T, Wu F, Hsu P S, et al. True green semipolar InGaNbased laser diodes beyond critical thickness limits using limited area epitaxy. J Appl Phys, 2013, 114:183101 doi: 10.1063/1.4829699
[30]
Lin Y D, Yamamoto S, Huang C Y, et al. High quality InGaN/AlGaN multiple quantum wells for semipolar InGaN green laser diodes. Appl Phys Express, 2010, 3:082001 doi: 10.1143/APEX.3.082001
[31]
Wu F, Lin Y D, Chakraborty A, et al. Stacking fault formation in the long wavelength InGaN/GaN multiple quantum wells grown on m-plane GaN. Appl Phys Lett, 2010, 96:231912 doi: 10.1063/1.3447940
[32]
Lermer T, Schillgalies M, Breidenassel A, et al. Waveguide design of green InGaN laser diodes. Physica Status Solidi (a), 2010, 207:1328 doi: 10.1002/pssa.200983410
[33]
Zhang L Q, Jiang D S, Zhu J J, et al. Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green. J Appl Phys, 2009, 105:023104 doi: 10.1063/1.3068182
[34]
Grzanka S, Franssen G, Targowski G, et al. Role of the electron blocking layer in the low-temperature collapse of electroluminescence in nitride light-emitting diodes. Appl Phys Lett, 2007, 90:103507 doi: 10.1063/1.2711765
[35]
Zhang S, Xie E, Yan T, et al. Hole transport assisted by the piezoelectric field in In0:4Ga0:6N/GaN quantum wells under electrical injection. J Appl Phys, 2015, 118:125709 doi: 10.1063/1.4931575
[36]
Cheng Y, Liu J, Tian A, et al. Hole transport in c-plane InGaNbased green laser diodes. Appl Phys Lett, 2016, 109:092104 doi: 10.1063/1.4961377
[37]
Sizov D, Zakharian A, Song K, et al. Carrier transport in InGaN MQWs of aquamarine-and green-laser diodes. IEEE J Sel Topics Quantum Electron, 2011, 17:1390 doi: 10.1109/JSTQE.2011.2116770
[38]
Liu J P, Li Z C, Zhang L Q, et al. Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region. Appl Phys Express, 2014, 7:111001 doi: 10.7567/APEX.7.111001
[39]
Yamamoto S, Zhao Y, Pan C, et al. High-efficiency singlequantum-well green and yellow-green light-emitting diodes on semipolar (2021) GaN substrates. Appl Phys Express, 2010, 3:122102 doi: 10.1143/APEX.3.122102
[40]
Chung R B, Lin Y, Koslow I, et al. Electroluminescence characterization of (2021) InGaN/GaN light emitting diodes with various wavelengths. Jpn J Appl Phys, 2010, 49:70203 doi: 10.1143/JJAP.49.070203
[41]
Adachi M. InGaN based green laser diodes on semipolar GaN substrate. Jpn J Appl Phys, 2014, 53:100207 doi: 10.7567/JJAP.53.100207
[42]
Queren D, Avramescu A, Schillgalies M, et al. Epitaxial design of 475 nm InGaN laser diodes with reduced wavelength shift. Physica Status Solidi (c), 2009, 6(S2):S826 doi: 10.1002/pssc.v6.5s2
[43]
Funato M, Kim Y S, Hira T, et al. Remarkably suppressed luminescence inhomogeneity in a (0001) InGaN green laser structure. Appl Phys Express, 2013, 6:111002 doi: 10.7567/APEX.6.111002
[44]
Ho I H, Stringfellow G B. Solid phase immiscibility in GaInN. Appl Phys Lett, 1996, 69:2701 doi: 10.1063/1.117683
[45]
Van Daele B, Van Tendeloo G, Jacobs K, et al. Formation of metallic In in InGaN/GaN multiquantum wells. Appl Phys Lett, 2004, 85:4379 doi: 10.1063/1.1815054
[46]
Moon Y T, Kim D J, Song K M, et al. Effects of thermal and hydrogen treatment on indium segregation in InGaN/GaN multiple quantum wells. J Appl Phys, 2001, 89:6514 doi: 10.1063/1.1370368
[47]
Suihkonen S, Svensk O, Lang T, et al. The effect of InGaN/GaN MQW hydrogen treatment and threading dislocation optimization on GaN LED efficiency. J Cryst Growth, 2007, 298:740 doi: 10.1016/j.jcrysgro.2006.10.131
[48]
Li Z, Liu J, Feng M, et al. Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth. Appl Phys Lett, 2013, 103:152109 doi: 10.1063/1.4824850
[49]
Yang J, Zhao D G, Jiang D S, et al. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films. J Appl Phys, 2014, 115:163704 doi: 10.1063/1.4873957
[50]
Koleske D D, Wickenden A E, Henry R L, et al. Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN. J Cryst Growth, 2002, 242:55 doi: 10.1016/S0022-0248(02)01348-9
[51]
Parish G, Keller S, Denbaars S P. SIMS investigations into the effect of growth conditions on residual impurity and silicon incorporation in GaN and AlxGa1-xN. J Electron Mater, 2000, 29:15 doi: 10.1007/s11664-000-0087-3
[52]
Chen J, Forsberg U, Janzen E. Impact of residual carbon on twodimensional electron gas properties in AlxGa1-xN/GaN heterostructure. Appl Phys Lett, 2013, 102:193506 doi: 10.1063/1.4804600
[53]
Tian A, Liu J, Ikeda M, et al. Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN:Mg cladding layer. Physica Status Solidi (c), 2015, 13:245 http://cn.bing.com/academic/profile?id=2310588465&encoded=0&v=paper_preview&mkt=zh-cn
[54]
Tian A, Liu J, Ikeda M, et al. Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity. Appl Phys Express, 2015, 8:051001 doi: 10.7567/APEX.8.051001
[55]
Suzuki M, Uenoyama T, Yanase A. First-principles calculations of effective-mass parameters of AlN and GaN. Phys Rev B, 1995, 52:8132 doi: 10.1103/PhysRevB.52.8132
[56]
Mnatsakanov T T, Levinshtein M E, Pomortseva L I, et al. Carrier mobility model for GaN. Solid-State Electron, 2003, 47:111 doi: 10.1016/S0038-1101(02)00256-3
[57]
Tanaka T, Watanabe A, Amano H, et al. p-type conduction in Mg-doped GaN and Al0:08Ga0:92N grown by metalorganic vapor phase epitaxy. Appl Phys Lett, 1994, 65:593 doi: 10.1063/1.112309
[58]
Liu J P, Ryou J H, Dupuis R D, et al. Barrier effect on hole transport and carrier distribution in InGaN=GaN multiple quantum well visible light-emitting diodes. Appl Phys Lett, 2008, 93:021102 doi: 10.1063/1.2957667
[59]
David A, Grundmann M J, Kaeding J K, et al. Carrier distribution in (0001) InGaN=GaN multiple quantum well light-emitting diodes. Appl Phys Lett, 2008, 92:053502 doi: 10.1063/1.2839305
[60]
Jung E, Hwang G, Chung J, et al. Investigating the origin of efficiency droop by profiling the temperature across the multiquantum well of an operating light-emitting diode. Appl Phys Lett, 2015, 106:041114 doi: 10.1063/1.4907177
[61]
Meyaard D S, Shan Q, Dai Q, et al. On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes. Appl Phys Lett, 2011, 99:041112 doi: 10.1063/1.3618673
[62]
Meyaard D S, Lin G B, Shan Q, et al. Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes. Appl Phys Lett, 2011, 99:251115 doi: 10.1063/1.3671395
[63]
Wang J, Wang L, Zhao W, et al. Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization. Appl Phys Lett, 2010, 97:201112 doi: 10.1063/1.3520139
[64]
Vampola K J, Iza M, Keller S, et al. Measurement of electron overflow in 450 nm InGaN light-emitting diode structures. Appl Phys Lett, 2009, 94:061116 doi: 10.1063/1.3081059
[65]
Kim M H, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes. Appl Phys Lett, 2007, 91:183507 doi: 10.1063/1.2800290
[66]
Le L, Zhao D, Jiang D, et al. Utilization of polarization-inverted AlInGaN or relatively thinner AlGaN electron blocking layer in InGaN-based blue-violet laser diodes. J Vac Sci Technol B, 2015, 33:011209 doi: 10.1116/1.4905430
[67]
Le L, Zhao D, Jiang D, et al. Suppression of electron leakage by inserting a thin undoped InGaN layer prior to electron blocking layer in InGaN-based blue-violet laser diodes. Opt Express, 2014, 22:11392 doi: 10.1364/OE.22.011392
[68]
Yang W, Li D, Liu N, et al. Improvement of hole injection and electron overflow by a tapered AlGaN electron blocking layer in InGaN-based blue laser diodes. Appl Phys Lett, 2012, 100:031105 doi: 10.1063/1.3678197
[69]
Zhang D, Liu Z C, Hu X D. An improved multi-layer stopper in a GaN-based laser diode. Semicond Sci Technol, 2009, 24:045003 doi: 10.1088/0268-1242/24/4/045003
[70]
Lee S N, Cho S, Ryu H, et al. High-power GaN-based blue-violet laser diodes with AlGaN/GaN multiquantum barriers. Appl Phys Lett, 2006, 88:1101
[71]
Kuo Y K, Chang Y A. Effects of electronic current overflow and inhomogeneous carrier distribution on InGaN quantum-well laser performance. IEEE J Quantum Electron, 2004, 40:437 doi: 10.1109/JQE.2004.826437
[72]
Sizov D S, Bhat R, Zakharian A, et al. Carrier transport in InGaN MQWs of aquamarine-and green-laser diodes. IEEE J Sele Topics Quantum Electron, 2011, 17:1390 doi: 10.1109/JSTQE.2011.2116770
[73]
Sizov D S, Bhat R, Zakharian A, et al. Impact of carrier transport on aquamarine-green laser performance. Appl Phys Express, 2010, 3:122101 doi: 10.1143/APEX.3.122101
[74]
Hager T, Binder M, Brüderl G, et al. Carrier transport in green AlInGaN based structures on c-plane substrates. Appl Phys Lett, 2013, 102:231102 doi: 10.1063/1.4809833
[75]
Hager T, Brüderl G, Lermer T, et al. Current dependence of electro-optical parameters in green and blue (AlIn)GaN laser diodes. Appl Phys Lett, 2012, 101:171109 doi: 10.1063/1.4764067
[76]
Wen P Y, Zhang S M, Li D Y, et al. Identification of degradation mechanisms of blue InGaN/GaN laser diodes. J Phys D, 20115, 48:415101 http://cn.bing.com/academic/profile?id=2227902485&encoded=0&v=paper_preview&mkt=zh-cn
[77]
Miyoshi T, Masui S, Okada T, et al. 510-515 nm InGaN-based green laser diodes on c-plane GaN substrate. Appl Phys Express, 2009, 2:062201 doi: 10.1143/APEX.2.062201
[78]
Miyoshi T, Masui S, Okada T, et al. InGaN-based 518 and 488 nm laser diodes on c-plane GaN substrate. Physica Status Solidi (a), 2010, 207:1389 doi: 10.1002/pssa.200983446
[79]
Nagahama S, Miyoshi T, Kasahara D, et al. Watt-class AlInGaN blue and green laser diodes. The 2nd Display Conference (LDC' 13), Yokohama, Japan, 2013
[80]
Queren D, Avramescu A, Breidenassel A, et al. 500 nm electrically driven InGaN based laser diodes. Appl Phys Lett, 2009, 94:81119 doi: 10.1063/1.3089573
[81]
Lutgen S, Avramescu A, Lermer T, et al. True green InGaN laser diodes. Physica Status Solidi (a), 2010, 207:1318 doi: 10.1002/pssa.200983620
[82]
Avramescu A, Lermer T, Muller J, et al. True green laser diodes at 524 nm with 50 mW continuous wave output power on c-plane GaN. Appl Phys Express, 2010, 3:61003 doi: 10.1143/APEX.3.061003
[83]
Vierheilig C, Eichler C, Tautz S, et al. Beyond blue pico laser:development of high power blue and low power direct green. Proceedings of SPIE, 2012, 8277:13 http://cn.bing.com/academic/profile?id=1985502471&encoded=0&v=paper_preview&mkt=zh-cn
[84]
Hager T, Strauß U, Eichler C, et al. Power blue and green laser diodes and their applications. Proceedings of SPIE, 2013, 8640:86400G doi: 10.1117/12.2006220
[85]
Zhang M, Bhattacharya P, Guo W. InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop. Appl Phys Lett, 2010, 97:011103 doi: 10.1063/1.3460921
[86]
Frost T, Banerjee A, Sun K, et al. InGaN/GaN quantum dot red (λ=630 nm) laser. J Quantum Electron, 2013, 49:923 doi: 10.1109/JQE.2013.2281062
[87]
Tian A Q, Liu J P, Zhang L Q, et al. Green laser diodes with low threshold current density via interface engineering of InGaN/GaN quantum well active region. Appl Phys Lett, submitted, 2016
[88]
Yusuke Y, Masahiro A, Yohei E, et al. Continuous-wave operation of 520 nm green InGaN-based laser diodes on semi-polar {2021} GaN substrates. Appl Phys Express, 2009, 2:092101 doi: 10.1143/APEX.2.092101
[89]
Anurag T, Robert M F, Kathryn M K, et al. AlGaN-cladding free green semipolar GaN based laser diode with a lasing wavelength of 506.4 nm. Appl Phys Express, 2010, 3:011002 http://cn.bing.com/academic/profile?id=2081984556&encoded=0&v=paper_preview&mkt=zh-cn
[90]
James W R, Mathew C S, Christiane P, et al. High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates. Appl Phys Express, 2010, 3:112101 doi: 10.1143/APEX.3.112101
[91]
Schmidt M C, Poblenz C, Chang Y C, et al. High-performance blue and green laser diodes based on nonpolar/semipolar GaN substrates. Proceedings of SPIE, 2011, 8039:80390D doi: 10.1117/12.884458
[92]
Sizov D, Heberle A P, Visovsky N J, et al. True-green (1122) plane optically pumped laser with cleaved m-plane facets. Appl Phys Lett, 2011, 99:41117 doi: 10.1063/1.3614436
[93]
Okamoto K, Kashiwagi J, Tanaka T, et al. Nonpolar m-plane InGaN multiple quantum well laser diodes with a lasing wavelength of 499.8 nm. Appl Phys Lett, 2009, 94:71105 doi: 10.1063/1.3078818
Fig. 1.  (Color online) Color gamut in the CIE chromaticity diagram of laser, LED, LCD and CRT display.

Fig. 2.  Wurtzite GaN crystallographic planes.

Fig. 3.  Optical gain spectra. The gain spectra of laser diodes broadens with the increase of the wavelength[13].

Fig. 4.  The schematic diagram of QCSE. Structure (a) is free from QCSE while structure (b) suffers from it.

Fig. 5.  (Color online) (a) Simulated near field for a schematic blue LD WG design. Oscillation of the field propagating in the substrate appear. (b) Measured near field pattern of a LD. Red: highest intensity, blue: lowest intensity, black: overexposed. Intensity of the mode leaking into substrate can be seen clearly[32].

Fig. 6.  The decrease of refractive index difference with the increasing of indium concentration and wavelength[33].

Fig. 7.  (Color online) Schematic diagram of green LDs' structure with the cap layers.

Fig. 8.  (Color online) (a) Wavelength dependent FWHMs of green LD structures with varying LT-cap thickness. The dashed line are guide lines to the eyes. (b) comparison of FWHMs of green LD structures from Sinano and the other work. It should be noted that the measured conditions are different for data from different groups.

Fig. 9.  The STEM images of the microstructure of active region with different thickness LT-cap. (a) 2.5 nm LT-cap,(b) 1.2 nm LT-cap. (c) and (d) are magnification of the circled areas in (a) and (b), respectively. The bright lines are the InGaN (QW) and the dark region between lines are the GaN (QB).

Fig. 10.  Micro PL images of (a) LD-Ⅰand (b) LD-Ⅱwith a p-type layer growth temperature 30℃ lower than that of LD-Ⅰ. (c) LD-Ⅲ, with nominally identical growth parameters as LD-Ⅱ except for a thinner LT cap layer. (d) Comparison of on-wafer EL spectra of samples LDs at 20 mA at room temperature and the inset shows normalized E

Fig. 11.  Dependence of growth conditions on carbon incorporation: (a) growth temperature,(b) growth pressure,(c) growth rate. (d) shows hole concentration and resistivity dependent on carbon concentration.

Fig. 12.  (Color online) (a) The schematic diagram of structure. (b) The experimental EL spectrum. (c) The simulated EL spectrum. (d) The experimental EL spectrum with Si-doped.

Fig. 13.  (a) Lasing spectrum and photograph of the laser beam of the 508 nm LD. (b) Power-current curve of green LDs under continuous-wave operation.

Table 1.   Progress of green LDs.

[1]
Queren D, Schillgalies M, Avramescu A, et al. Quality and thermal stability of thin InGaN films. J Cryst Growth, 2009, 311:2933 doi: 10.1016/j.jcrysgro.2009.01.066
[2]
Schwarz U T, Scheibenzuber W G. The green laser diode:completing the rainbow. Optics & Photonics News, 2011, 22(9):38 http://cn.bing.com/academic/profile?id=2093981113&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Jansen M, Carey G P, Carico R, et al. Visible laser and laser array sources for projection display. Proceedings of SPIE, 2006, 6135:198 http://cn.bing.com/academic/profile?id=2018046147&encoded=0&v=paper_preview&mkt=zh-cn
[4]
Belyanin A A, Lutgen S, Smowton P M, et al. Progress of blue and green InGaN laser diodes. Proceedings of SPIE, 2010, 7616:76160G doi: 10.1117/12.842131
[5]
Sizov D, Bhat R, Zah C E. Gallium indium nitride-based green lasers. J Lightw Technol, 2012, 30:679 doi: 10.1109/JLT.2011.2176918
[6]
Ambacher O. Growth and applications of group Ⅲ nitrides. J Phys D, 1998, 31:2653 doi: 10.1088/0022-3727/31/20/001
[7]
Amano H. Development of GaN-based blue LEDs and metalorganic vapor phase epitaxy of GaN and related materials. Prog Cryst Growth Charact Mater, 2016, 62:126 doi: 10.1016/j.pcrysgrow.2016.04.006
[8]
Kozaki T, Matsumura H, Sugimoto Y, et al. High-power and wide wavelength range GaN-based laser diodes. Proceedings of SPIE, 2006, 6133:16 http://cn.bing.com/academic/profile?id=2083136845&encoded=0&v=paper_preview&mkt=zh-cn
[9]
Nagahama S, Yanamoto T, Sano M, et al. Wavelength dependence of InGaN laser diode characteristics. Jpn J Appl Phys, 2001, 40:3075 doi: 10.1143/JJAP.40.3075
[10]
Khan A. Laser diodes go green. Nature Photonics, 2009, 3:432 doi: 10.1038/nphoton.2009.124
[11]
Nakamura S, Senoh M, Iwasa N, et al. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn J Appl Phys, 1995, 34:L797 doi: 10.1143/JJAP.34.L797
[12]
Oliver R A, Kappers M J, Humphreys C J, et al. Growth modes in heteroepitaxy of InGaN on GaN. J Appl Phys, 2005, 97:8 http://cn.bing.com/academic/profile?id=1996520434&encoded=0&v=paper_preview&mkt=zh-cn
[13]
Kojima K, Schwarz U T, Funato M, et al. Optical gain spectra for near UV to aquamarine (Al, In)GaN laser diodes. Optics Express, 2007, 15:7730 doi: 10.1364/OE.15.007730
[14]
Yang J, Zhao D G, Jiang D S, et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes. Optics Express, 2016, 24:13824 doi: 10.1364/OE.24.013824
[15]
Follstaedt D M, Lee S R, Allerman A A, et al. Strain relaxation in AlGaN multilayer structures by inclined dislocations. J Appl Phys, 2009, 105:083507 doi: 10.1063/1.3087515
[16]
Cho Y H, Gainer G H, Fischer A J, et al. "S-shaped" temperaturedependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl Phys Lett, 1998, 73:1370 doi: 10.1063/1.122164
[17]
Bai J Z, Wang T, Sakai S. Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures. J Appl Phys, 2000, 88:4729 doi: 10.1063/1.1311831
[18]
Im J S, Off J, Sohmer A, et al. Reduction of oscillator strength due to piezoelectric fields in GaN/AlxGa1-xN quantum wells. Phys Rev B, 1998, 57:R9435 doi: 10.1103/PhysRevB.57.R9435
[19]
Peng L H, Chuang C, Lou L H. Piezoelectric effects in the optical properties of strained InGaN quantum wells. Appl Phys Lett, 1999, 74:795 doi: 10.1063/1.123370
[20]
Sala F D, Carlo A D, Lugli P, et al. Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures. Appl Phys Lett, 1999, 74:2002 doi: 10.1063/1.123727
[21]
Wang T, Bai J, Sakai S, et al. Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes. Appl Phys Lett, 2001, 78:2617 doi: 10.1063/1.1368374
[22]
Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectric constants of Ⅲ-V nitrides. Phys Rev B, 1997, 56:R10024 doi: 10.1103/PhysRevB.56.R10024
[23]
Bernardini F, Fiorentini V. Polarization fields in nitride nanostructures:10 points to think about. Appl Surf Sci, 2000, 166:23 doi: 10.1016/S0169-4332(00)00434-7
[24]
Zhang M, Moore J, Mi Z, et al. Polarization effects in selforganized InGaN/GaN quantum dots grown by RF-plasmaassisted molecular beam epitaxy. J Cryst Growth, 2009, 311:2069 doi: 10.1016/j.jcrysgro.2008.10.042
[25]
Della Sala F, Di Carlo A, Lugli P, et al. Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures. Appl Phys Lett, 1999, 74:2002 doi: 10.1063/1.123727
[26]
Huang C Y, Lin Y D, Tyagi A, et al. Optical waveguide simulations for the optimization of InGaN-based green laser diodes. J Appl Phys, 2010, 107:7 http://cn.bing.com/academic/profile?id=2013299429&encoded=0&v=paper_preview&mkt=zh-cn
[27]
Masahiro A, Yusuke Y, Yohei E, et al. Low threshold current density InGaN based 520-530 nm green laser diodes on semi-polar {2021} free-standing GaN substrates. Appl Phys Express, 2010, 3:121001 doi: 10.1143/APEX.3.121001
[28]
Yanashima K, Nakajima H, Tasai K, et al. Long-lifetime true green laser diodes with output power over 50 mW above 525 nm grown on semipolar {2021} GaN substrates. Appl Phys Express, 2012, 5:82103 doi: 10.1143/APEX.5.082103
[29]
Hardy M T, Wu F, Hsu P S, et al. True green semipolar InGaNbased laser diodes beyond critical thickness limits using limited area epitaxy. J Appl Phys, 2013, 114:183101 doi: 10.1063/1.4829699
[30]
Lin Y D, Yamamoto S, Huang C Y, et al. High quality InGaN/AlGaN multiple quantum wells for semipolar InGaN green laser diodes. Appl Phys Express, 2010, 3:082001 doi: 10.1143/APEX.3.082001
[31]
Wu F, Lin Y D, Chakraborty A, et al. Stacking fault formation in the long wavelength InGaN/GaN multiple quantum wells grown on m-plane GaN. Appl Phys Lett, 2010, 96:231912 doi: 10.1063/1.3447940
[32]
Lermer T, Schillgalies M, Breidenassel A, et al. Waveguide design of green InGaN laser diodes. Physica Status Solidi (a), 2010, 207:1328 doi: 10.1002/pssa.200983410
[33]
Zhang L Q, Jiang D S, Zhu J J, et al. Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green. J Appl Phys, 2009, 105:023104 doi: 10.1063/1.3068182
[34]
Grzanka S, Franssen G, Targowski G, et al. Role of the electron blocking layer in the low-temperature collapse of electroluminescence in nitride light-emitting diodes. Appl Phys Lett, 2007, 90:103507 doi: 10.1063/1.2711765
[35]
Zhang S, Xie E, Yan T, et al. Hole transport assisted by the piezoelectric field in In0:4Ga0:6N/GaN quantum wells under electrical injection. J Appl Phys, 2015, 118:125709 doi: 10.1063/1.4931575
[36]
Cheng Y, Liu J, Tian A, et al. Hole transport in c-plane InGaNbased green laser diodes. Appl Phys Lett, 2016, 109:092104 doi: 10.1063/1.4961377
[37]
Sizov D, Zakharian A, Song K, et al. Carrier transport in InGaN MQWs of aquamarine-and green-laser diodes. IEEE J Sel Topics Quantum Electron, 2011, 17:1390 doi: 10.1109/JSTQE.2011.2116770
[38]
Liu J P, Li Z C, Zhang L Q, et al. Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region. Appl Phys Express, 2014, 7:111001 doi: 10.7567/APEX.7.111001
[39]
Yamamoto S, Zhao Y, Pan C, et al. High-efficiency singlequantum-well green and yellow-green light-emitting diodes on semipolar (2021) GaN substrates. Appl Phys Express, 2010, 3:122102 doi: 10.1143/APEX.3.122102
[40]
Chung R B, Lin Y, Koslow I, et al. Electroluminescence characterization of (2021) InGaN/GaN light emitting diodes with various wavelengths. Jpn J Appl Phys, 2010, 49:70203 doi: 10.1143/JJAP.49.070203
[41]
Adachi M. InGaN based green laser diodes on semipolar GaN substrate. Jpn J Appl Phys, 2014, 53:100207 doi: 10.7567/JJAP.53.100207
[42]
Queren D, Avramescu A, Schillgalies M, et al. Epitaxial design of 475 nm InGaN laser diodes with reduced wavelength shift. Physica Status Solidi (c), 2009, 6(S2):S826 doi: 10.1002/pssc.v6.5s2
[43]
Funato M, Kim Y S, Hira T, et al. Remarkably suppressed luminescence inhomogeneity in a (0001) InGaN green laser structure. Appl Phys Express, 2013, 6:111002 doi: 10.7567/APEX.6.111002
[44]
Ho I H, Stringfellow G B. Solid phase immiscibility in GaInN. Appl Phys Lett, 1996, 69:2701 doi: 10.1063/1.117683
[45]
Van Daele B, Van Tendeloo G, Jacobs K, et al. Formation of metallic In in InGaN/GaN multiquantum wells. Appl Phys Lett, 2004, 85:4379 doi: 10.1063/1.1815054
[46]
Moon Y T, Kim D J, Song K M, et al. Effects of thermal and hydrogen treatment on indium segregation in InGaN/GaN multiple quantum wells. J Appl Phys, 2001, 89:6514 doi: 10.1063/1.1370368
[47]
Suihkonen S, Svensk O, Lang T, et al. The effect of InGaN/GaN MQW hydrogen treatment and threading dislocation optimization on GaN LED efficiency. J Cryst Growth, 2007, 298:740 doi: 10.1016/j.jcrysgro.2006.10.131
[48]
Li Z, Liu J, Feng M, et al. Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth. Appl Phys Lett, 2013, 103:152109 doi: 10.1063/1.4824850
[49]
Yang J, Zhao D G, Jiang D S, et al. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films. J Appl Phys, 2014, 115:163704 doi: 10.1063/1.4873957
[50]
Koleske D D, Wickenden A E, Henry R L, et al. Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN. J Cryst Growth, 2002, 242:55 doi: 10.1016/S0022-0248(02)01348-9
[51]
Parish G, Keller S, Denbaars S P. SIMS investigations into the effect of growth conditions on residual impurity and silicon incorporation in GaN and AlxGa1-xN. J Electron Mater, 2000, 29:15 doi: 10.1007/s11664-000-0087-3
[52]
Chen J, Forsberg U, Janzen E. Impact of residual carbon on twodimensional electron gas properties in AlxGa1-xN/GaN heterostructure. Appl Phys Lett, 2013, 102:193506 doi: 10.1063/1.4804600
[53]
Tian A, Liu J, Ikeda M, et al. Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN:Mg cladding layer. Physica Status Solidi (c), 2015, 13:245 http://cn.bing.com/academic/profile?id=2310588465&encoded=0&v=paper_preview&mkt=zh-cn
[54]
Tian A, Liu J, Ikeda M, et al. Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity. Appl Phys Express, 2015, 8:051001 doi: 10.7567/APEX.8.051001
[55]
Suzuki M, Uenoyama T, Yanase A. First-principles calculations of effective-mass parameters of AlN and GaN. Phys Rev B, 1995, 52:8132 doi: 10.1103/PhysRevB.52.8132
[56]
Mnatsakanov T T, Levinshtein M E, Pomortseva L I, et al. Carrier mobility model for GaN. Solid-State Electron, 2003, 47:111 doi: 10.1016/S0038-1101(02)00256-3
[57]
Tanaka T, Watanabe A, Amano H, et al. p-type conduction in Mg-doped GaN and Al0:08Ga0:92N grown by metalorganic vapor phase epitaxy. Appl Phys Lett, 1994, 65:593 doi: 10.1063/1.112309
[58]
Liu J P, Ryou J H, Dupuis R D, et al. Barrier effect on hole transport and carrier distribution in InGaN=GaN multiple quantum well visible light-emitting diodes. Appl Phys Lett, 2008, 93:021102 doi: 10.1063/1.2957667
[59]
David A, Grundmann M J, Kaeding J K, et al. Carrier distribution in (0001) InGaN=GaN multiple quantum well light-emitting diodes. Appl Phys Lett, 2008, 92:053502 doi: 10.1063/1.2839305
[60]
Jung E, Hwang G, Chung J, et al. Investigating the origin of efficiency droop by profiling the temperature across the multiquantum well of an operating light-emitting diode. Appl Phys Lett, 2015, 106:041114 doi: 10.1063/1.4907177
[61]
Meyaard D S, Shan Q, Dai Q, et al. On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes. Appl Phys Lett, 2011, 99:041112 doi: 10.1063/1.3618673
[62]
Meyaard D S, Lin G B, Shan Q, et al. Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes. Appl Phys Lett, 2011, 99:251115 doi: 10.1063/1.3671395
[63]
Wang J, Wang L, Zhao W, et al. Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization. Appl Phys Lett, 2010, 97:201112 doi: 10.1063/1.3520139
[64]
Vampola K J, Iza M, Keller S, et al. Measurement of electron overflow in 450 nm InGaN light-emitting diode structures. Appl Phys Lett, 2009, 94:061116 doi: 10.1063/1.3081059
[65]
Kim M H, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes. Appl Phys Lett, 2007, 91:183507 doi: 10.1063/1.2800290
[66]
Le L, Zhao D, Jiang D, et al. Utilization of polarization-inverted AlInGaN or relatively thinner AlGaN electron blocking layer in InGaN-based blue-violet laser diodes. J Vac Sci Technol B, 2015, 33:011209 doi: 10.1116/1.4905430
[67]
Le L, Zhao D, Jiang D, et al. Suppression of electron leakage by inserting a thin undoped InGaN layer prior to electron blocking layer in InGaN-based blue-violet laser diodes. Opt Express, 2014, 22:11392 doi: 10.1364/OE.22.011392
[68]
Yang W, Li D, Liu N, et al. Improvement of hole injection and electron overflow by a tapered AlGaN electron blocking layer in InGaN-based blue laser diodes. Appl Phys Lett, 2012, 100:031105 doi: 10.1063/1.3678197
[69]
Zhang D, Liu Z C, Hu X D. An improved multi-layer stopper in a GaN-based laser diode. Semicond Sci Technol, 2009, 24:045003 doi: 10.1088/0268-1242/24/4/045003
[70]
Lee S N, Cho S, Ryu H, et al. High-power GaN-based blue-violet laser diodes with AlGaN/GaN multiquantum barriers. Appl Phys Lett, 2006, 88:1101
[71]
Kuo Y K, Chang Y A. Effects of electronic current overflow and inhomogeneous carrier distribution on InGaN quantum-well laser performance. IEEE J Quantum Electron, 2004, 40:437 doi: 10.1109/JQE.2004.826437
[72]
Sizov D S, Bhat R, Zakharian A, et al. Carrier transport in InGaN MQWs of aquamarine-and green-laser diodes. IEEE J Sele Topics Quantum Electron, 2011, 17:1390 doi: 10.1109/JSTQE.2011.2116770
[73]
Sizov D S, Bhat R, Zakharian A, et al. Impact of carrier transport on aquamarine-green laser performance. Appl Phys Express, 2010, 3:122101 doi: 10.1143/APEX.3.122101
[74]
Hager T, Binder M, Brüderl G, et al. Carrier transport in green AlInGaN based structures on c-plane substrates. Appl Phys Lett, 2013, 102:231102 doi: 10.1063/1.4809833
[75]
Hager T, Brüderl G, Lermer T, et al. Current dependence of electro-optical parameters in green and blue (AlIn)GaN laser diodes. Appl Phys Lett, 2012, 101:171109 doi: 10.1063/1.4764067
[76]
Wen P Y, Zhang S M, Li D Y, et al. Identification of degradation mechanisms of blue InGaN/GaN laser diodes. J Phys D, 20115, 48:415101 http://cn.bing.com/academic/profile?id=2227902485&encoded=0&v=paper_preview&mkt=zh-cn
[77]
Miyoshi T, Masui S, Okada T, et al. 510-515 nm InGaN-based green laser diodes on c-plane GaN substrate. Appl Phys Express, 2009, 2:062201 doi: 10.1143/APEX.2.062201
[78]
Miyoshi T, Masui S, Okada T, et al. InGaN-based 518 and 488 nm laser diodes on c-plane GaN substrate. Physica Status Solidi (a), 2010, 207:1389 doi: 10.1002/pssa.200983446
[79]
Nagahama S, Miyoshi T, Kasahara D, et al. Watt-class AlInGaN blue and green laser diodes. The 2nd Display Conference (LDC' 13), Yokohama, Japan, 2013
[80]
Queren D, Avramescu A, Breidenassel A, et al. 500 nm electrically driven InGaN based laser diodes. Appl Phys Lett, 2009, 94:81119 doi: 10.1063/1.3089573
[81]
Lutgen S, Avramescu A, Lermer T, et al. True green InGaN laser diodes. Physica Status Solidi (a), 2010, 207:1318 doi: 10.1002/pssa.200983620
[82]
Avramescu A, Lermer T, Muller J, et al. True green laser diodes at 524 nm with 50 mW continuous wave output power on c-plane GaN. Appl Phys Express, 2010, 3:61003 doi: 10.1143/APEX.3.061003
[83]
Vierheilig C, Eichler C, Tautz S, et al. Beyond blue pico laser:development of high power blue and low power direct green. Proceedings of SPIE, 2012, 8277:13 http://cn.bing.com/academic/profile?id=1985502471&encoded=0&v=paper_preview&mkt=zh-cn
[84]
Hager T, Strauß U, Eichler C, et al. Power blue and green laser diodes and their applications. Proceedings of SPIE, 2013, 8640:86400G doi: 10.1117/12.2006220
[85]
Zhang M, Bhattacharya P, Guo W. InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop. Appl Phys Lett, 2010, 97:011103 doi: 10.1063/1.3460921
[86]
Frost T, Banerjee A, Sun K, et al. InGaN/GaN quantum dot red (λ=630 nm) laser. J Quantum Electron, 2013, 49:923 doi: 10.1109/JQE.2013.2281062
[87]
Tian A Q, Liu J P, Zhang L Q, et al. Green laser diodes with low threshold current density via interface engineering of InGaN/GaN quantum well active region. Appl Phys Lett, submitted, 2016
[88]
Yusuke Y, Masahiro A, Yohei E, et al. Continuous-wave operation of 520 nm green InGaN-based laser diodes on semi-polar {2021} GaN substrates. Appl Phys Express, 2009, 2:092101 doi: 10.1143/APEX.2.092101
[89]
Anurag T, Robert M F, Kathryn M K, et al. AlGaN-cladding free green semipolar GaN based laser diode with a lasing wavelength of 506.4 nm. Appl Phys Express, 2010, 3:011002 http://cn.bing.com/academic/profile?id=2081984556&encoded=0&v=paper_preview&mkt=zh-cn
[90]
James W R, Mathew C S, Christiane P, et al. High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates. Appl Phys Express, 2010, 3:112101 doi: 10.1143/APEX.3.112101
[91]
Schmidt M C, Poblenz C, Chang Y C, et al. High-performance blue and green laser diodes based on nonpolar/semipolar GaN substrates. Proceedings of SPIE, 2011, 8039:80390D doi: 10.1117/12.884458
[92]
Sizov D, Heberle A P, Visovsky N J, et al. True-green (1122) plane optically pumped laser with cleaved m-plane facets. Appl Phys Lett, 2011, 99:41117 doi: 10.1063/1.3614436
[93]
Okamoto K, Kashiwagi J, Tanaka T, et al. Nonpolar m-plane InGaN multiple quantum well laser diodes with a lasing wavelength of 499.8 nm. Appl Phys Lett, 2009, 94:71105 doi: 10.1063/1.3078818
1

Application of nano-patterned InGaN fabricated by self-assembled Ni nano-masks in green InGaN/GaN multiple quantum wells

Ruoshi Peng, Shengrui Xu, Xiaomeng Fan, Hongchang Tao, Huake Su, et al.

Journal of Semiconductors, 2023, 44(4): 042801. doi: 10.1088/1674-4926/44/4/042801

2

Investigation of the current collapse induced in InGaN back barrier AlGaN/GaN high electron mobility transistors

Xiaojia Wan, Xiaoliang Wang, Hongling Xiao, Chun Feng, Lijuan Jiang, et al.

Journal of Semiconductors, 2013, 34(10): 104002. doi: 10.1088/1674-4926/34/10/104002

3

Enhanced performance of InGaN/GaN multiple quantum well solar cells with patterned sapphire substrate

Liang Jing, Hongling Xiao, Xiaoliang Wang, Cuimei Wang, Qingwen Deng, et al.

Journal of Semiconductors, 2013, 34(12): 124004. doi: 10.1088/1674-4926/34/12/124004

4

RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT

T. R. Lenka, G. N. Dash, A. K. Panda

Journal of Semiconductors, 2013, 34(11): 114003. doi: 10.1088/1674-4926/34/11/114003

5

Phase separations in graded-indium content InGaN/GaN multiple quantum wells and its function to high quantum efficiency

Guo Hongying, Sun Yuanping, Yong-Hoon Cho, Eun-Kyung Suh, Hai-Joon Lee, et al.

Journal of Semiconductors, 2012, 33(5): 053001. doi: 10.1088/1674-4926/33/5/053001

6

Characterisation of the optical properties of InGaN MQW structures using a combined SEM and CL spectral mapping system

Mark N. Lockrey, Matthew R. Phillips

Journal of Semiconductors, 2011, 32(1): 012001. doi: 10.1088/1674-4926/32/1/012001

7

Luminescence distribution and hole transport in asymmetric InGaN multiple-quantum well light-emitting diodes

Ji Xiaoli, Yang Fuhua, Wang Junxi, Duan Ruifei, Ding Kai, et al.

Journal of Semiconductors, 2010, 31(9): 094009. doi: 10.1088/1674-4926/31/9/094009

8

Characterization of quaternary AlInGaN epilayers and polarization-reduced InGaN/AlInGaN MQWgrown by MOCVD

Liu Naixin, Wang Junxi, Yan Jianchang, Liu Zhe, Ruan Jun, et al.

Journal of Semiconductors, 2009, 30(11): 113003. doi: 10.1088/1674-4926/30/11/113003

9

TEM Characterization of Defects in GaN/InGaN Multi-Quantum Wells Grown on Silicon by MOCVD

Zhu Hua, Li Cuiyun, Mo Chunlan, Jiang Fengyi, Zhang Meng, et al.

Journal of Semiconductors, 2008, 29(3): 539-543.

10

Growth and Optical Characteristics of 408nm InGaN/GaN MQW LED

Wang Xiaohua, Zhan Wang, Liu Guojun

Chinese Journal of Semiconductors , 2007, 28(1): 104-107.

11

Influence of Temperature on MOCVD Growth of InGaN

Wang Lili, Wang Hui, Sun Xian, Wang Hai, Zhu Jianjun, et al.

Chinese Journal of Semiconductors , 2007, 28(S1): 257-259.

12

Theoretical Calculation of Conversion Efficiency of InGaN Solar Cells

Wen Bo, Zhou Jianjun, Jiang Ruolian, Xie Zili, Chen Dunjun, et al.

Chinese Journal of Semiconductors , 2007, 28(9): 1392-1395.

13

Influence of Polarization-Induced Electric Fields on Optical Properties of Intersubband Transitions in AlxGa1-xN/GaN Double Quantum Wells

Lei Shuangying, Shen Bo, Xu Fujun, Yang Zhijian, Xu Ke, et al.

Chinese Journal of Semiconductors , 2006, 27(3): 403-408.

14

Modified Reynolds Equation for Squeeze-Film Air Damping of Slotted Plates in MEMS Devices

Sun Yuancheng, Bao Minhang, Yang Heng, Huang Yiping

Chinese Journal of Semiconductors , 2006, 27(3): 473-477.

15

Microstructure of an InGaN/GaN Multiple Quantum Well LED on Si (111) Substrate

Li Cuiyun, Zhu Hua, Mo Chunlan, Jiang Fengyi

Chinese Journal of Semiconductors , 2006, 27(11): 1950-1954.

16

Temperature Distribution in Ridge Structure InGaN Laser Diodes and Its Influence on Device Characteristics

Li Deyao, Huang Yongzhen, Zhang Shuming, Chong Ming, Ye Xiaojun, et al.

Chinese Journal of Semiconductors , 2006, 27(3): 499-505.

17

Ray Tracing Simulation of InGaN/GaN Light-Emitting Diodes with Parabolic Substrates

Xia Changsheng, Li Zhifeng, Wang Chong, Chen Xiaoshuang, Lu Wei, et al.

Chinese Journal of Semiconductors , 2006, 27(1): 100-104.

18

Strain Effect on Photoluminescence from InGaN/GaN and InGaN/AlGaN MQWs

Yu Tongjun, Kang Xiangning, Qin Zhixin, Chen Zhizhong, Yang Zhijian, et al.

Chinese Journal of Semiconductors , 2006, 27(S1): 20-24.

19

Influence of Thermal Annealing on Properties of InGaN Films

Wen Bo, Jiang Ruolian, Liu Chengxiang, Xie Zili, Zhou Jianjun, et al.

Chinese Journal of Semiconductors , 2006, 27(S1): 92-96.

20

A Quasi-Therm odynam ic Model of MOVPE of InGaN

Chinese Journal of Semiconductors , 2000, 21(2): 105-114.

1. Wagle, P., Mainali, P., Shrestha, S. et al. Improving the growth of pulsed chemical vapor deposition of GaN on Si(100) by in situ ammonia nitriding of the Si surface. Journal of Applied Physics, 2025, 137(6): 065302. doi:10.1063/5.0228821
2. Mustafa, L., Usman, M., Ali, S. et al. Effect of Quaternary p-AlInGaN Interlayer on the Light Output Power and Gain of InGaN Green Laser Diode. Transactions on Electrical and Electronic Materials, 2025. doi:10.1007/s42341-025-00591-2
3. Sarzała, R.P., Dąbrówka, D., Dems, M. Thermal Optimization of Edge-Emitting Lasers Arrays. Materials, 2025, 18(1): 107. doi:10.3390/ma18010107
4. Wang, Y., Liang, F., Yang, J. et al. Mechanism of Indium Redistribution and Thermal Degradation in InGaN/(In)GaN Quantum Wells of Vertical Cavity Surface Emitting Lasers. Crystal Growth and Design, 2024, 24(24): 10291-10298. doi:10.1021/acs.cgd.4c01270
5. Hou, Y., Wang, Y., Li, Z. et al. Tutorial on laser-based visible light communications [Invited]. Chinese Optics Letters, 2024, 22(9): 092502. doi:10.3788/COL202422.092502
6. Mu, Y.W., Dong, H.L., Jia, Z.G. et al. Effect of Asymmetric InAlGaN/GaN Superlattice Barrier Structure on the Optoelectronic Performance of GaN-Based Green Laser Diode. ECS Journal of Solid State Science and Technology, 2024, 13(5): 055002. doi:10.1149/2162-8777/ad441d
7. Wu, P., Liu, J., Li, F. et al. Effects of Miscut on Step Instabilities in Homo-Epitaxially Grown GaN. Nanomaterials, 2024, 14(9): 748. doi:10.3390/nano14090748
8. Kuhn, E.. Simulation of the Mode Dynamics in Broad-Ridge Laser Diodes. IEEE Photonics Journal, 2024, 16(2): 1-8. doi:10.1109/JPHOT.2024.3374448
9. Sun, D., Liu, L., Wang, G. et al. Research Progress in Liquid Phase Growth of GaN Crystals. Chemistry - A European Journal, 2024, 30(17): e202303710. doi:10.1002/chem.202303710
10. Chen, Y., Jiang, D., Zeng, C. et al. Controlling GaN-Based Laser Diode Performance by Variation of the Al Content of an Inserted AlGaN Electron Blocking Layer. Nanomaterials, 2024, 14(5): 449. doi:10.3390/nano14050449
11. Wu, P., Liu, J., Hu, L. et al. Controllable step-flow growth of GaN on patterned freestanding substrate. Journal of Semiconductors, 2024, 45(2): 022501. doi:10.1088/1674-4926/45/2/022501
12. Li, Y., Shen, X., Li, Y. et al. Thermally-stable AlN-based green and red composite ceramic phosphor wheel for LD lighting with high CRI. Ceramics International, 2024, 50(2): 2643-2651. doi:10.1016/j.ceramint.2023.10.252
13. Marouf, Y., Dehimi, L., Bencherif, H. et al. Deep insights on the performance of different structures of InGaN-based tandem photovoltaic cells: path towards the design of high efficiency PV modules. Journal of Optics (India), 2024. doi:10.1007/s12596-024-02045-z
14. Fang, J., Zhang, F., Yang, W. et al. Electrical properties and structural optimization of GaN/InGaN/GaN tunnel junctions grown by molecular beam epitaxy. Journal of Semiconductors, 2024, 45(1): 012503. doi:10.1088/1674-4926/45/1/012503
15. Wang, Y., Liang, F., Yang, J. et al. Investigation of the Indium migration mechanism in the growth of InGaN quantum wells by MOCVD. Journal of Crystal Growth, 2023. doi:10.1016/j.jcrysgro.2023.127404
16. Wu, J., Liu, B., Xia, X. et al. GaN/graphene heterostructures as promising anode materials for Li-ion batteries. Surfaces and Interfaces, 2023. doi:10.1016/j.surfin.2023.103333
17. Kuhn, E., Thränhardt, A. Influence of scattering effects on the interaction between longitudinal modes in laser diodes. Physical Review B, 2023, 108(11): 115304. doi:10.1103/PhysRevB.108.115304
18. Wang, M., Lin, Y., Wang, M. et al. Double-sided asymmetric metasurfaces achieving sub-microscale focusing from a GaN green laser diode. Optics Express, 2023, 31(13): 20740-20749. doi:10.1364/OE.493257
19. Tan, G., Abu Bakar, A.S., Ooi, C.S. et al. The effect of ammonia partial pressure on the growth of semipolar (11–22) InGaN/GaN MQWs and LED structures. Materials Science and Engineering: B, 2023. doi:10.1016/j.mseb.2023.116368
20. Chen, X., Xu, Y., Tsai, C.-C. et al. An injection-locked green InGaN diode laser. Microwave and Optical Technology Letters, 2023, 65(5): 1037-1041. doi:10.1002/mop.33094
21. Shi, Z., Tian, A., Sun, X. et al. Formation mechanism of trench defects in green InGaN/GaN multiple quantum wells. Journal of Applied Physics, 2023, 133(12): 123103. doi:10.1063/5.0136104
22. Song, W., Chen, Q., Yang, K. et al. Recent Advances in Mechanically Transferable III-Nitride Based on 2D Buffer Strategy. Advanced Functional Materials, 2023, 33(12): 2209880. doi:10.1002/adfm.202209880
23. Khan, S.U., Niass, M.I., Zhang, A. et al. Performance enhancement of an AlGaN-based deep-ultraviolet laser diode using a two-stepped doped lower waveguide. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2023, 90(2): 62-67. doi:10.1364/JOT.90.000062
24. Sun, Y., Stone, J., Lu, X. et al. Spanning the green gap through on-chip Kerr optical parametric oscillation. 2023. doi:10.1109/IPC57732.2023.10360609
25. Du, J., Chen, X., Yu, H. et al. High-power continuous-wave self-frequency-doubled monolithic laser. Optics Letters, 2022, 47(24): 6393-6396. doi:10.1364/OL.478823
26. Chang, H.-M., Chan, P., Lim, N. et al. Demonstration of C-Plane InGaN-Based Blue Laser Diodes Grown on a Strain-Relaxed Template. Crystals, 2022, 12(9): 1208. doi:10.3390/cryst12091208
27. Li, Y., Liu, J., Tian, A. et al. Current Status and Advances of GaN-based UV Laser Diodes for Near-UV Wavelength | [GaN基近紫外激光器研究现状与进展]. Bandaoti Guangdian/Semiconductor Optoelectronics, 2022, 43(3): 451-460. doi:10.16818/j.issn1001-5868.2022053004
28. Tian, A., Hu, L., Li, X. et al. Greatly suppressed potential inhomogeneity and performance improvement of c-plane InGaN green laser diodes | [改善势能均匀性提升c面InGaN绿光激光器性能]. Science China Materials, 2022, 65(2): 543-546. doi:10.1007/s40843-021-1804-x
29. Lin Hsiang, E., Yang, Z., Yang, Q. et al. AR/VR light engines: perspectives and challenges. Advances in Optics and Photonics, 2022, 14(4): 783-861. doi:10.1364/AOP.468066
30. Tay, Y.K.E., He, H., Tian, X. et al. The Halide Perovskite Gain Media. SpringerBriefs in Applied Sciences and Technology, 2022. doi:10.1007/978-981-16-7973-5_2
31. Wang, Z., Wang, G., Liu, X. et al. Two-dimensional wide band-gap nitride semiconductor GaN and AlN materials: properties, fabrication and applications. Journal of Materials Chemistry C, 2021, 9(48): 17201-17232. doi:10.1039/d1tc04022g
32. Ma, C., Cao, Y. Phosphor converters for laser driven light sources. Applied Physics Letters, 2021, 118(21): 210503. doi:10.1063/5.0053581
33. Nag, D., Aggarwal, T., Sinha, S. et al. Carrier-Induced Defect Saturation in Green InGaN LEDs: A Potential Phenomenon to Enhance Efficiency at Higher Wavelength Regime. ACS Photonics, 2021, 8(3): 926-932. doi:10.1021/acsphotonics.0c01969
34. Nag, D., Sinha, S., Sarkar, R. et al. Impact of Ex-Situ Heating on Carrier Kinetics in GaN/InGaN Based Green LEDs. ECS Journal of Solid State Science and Technology, 2021, 10(3): 035004. doi:10.1149/2162-8777/abe97c
35. Yu, J., Hao, Z., Wang, L. et al. First-principle calculations of adsorption of Ga (Al, N) adatoms on the graphene for the van-der-Waals epitaxy. Materials Today Communications, 2021. doi:10.1016/j.mtcomm.2020.101571
36. Hou, Y., Zhao, D., Liang, F. et al. Performance improvement of GaN-based blue and ultraviolet double quantum well laser diodes by using stepped-doped lower waveguide. Materials Science in Semiconductor Processing, 2021. doi:10.1016/j.mssp.2020.105355
37. Jamal, M.T., Hansen, A.K., Tawfieq, M. et al. Influence of pump beam shaping and noise on performance of a direct diode-pumped ultrafast Ti:sapphire laser. Optics Express, 2020, 28(21): 31754-31762. doi:10.1364/OE.404968
38. Laxmi, N., Routray, S., Pradhan, K.P. III-Nitride/Si Tandem Solar Cell for High Spectral Response: Key Attributes of Auto-tunneling Mechanisms. Silicon, 2020, 12(10): 2455-2463. doi:10.1007/s12633-019-00342-y
39. Tian, A., Hu, L., Zhang, L. et al. Design and growth of GaN-based blue and green laser diodes | [GaN基蓝光与绿光激光器]. Science China Materials, 2020, 63(8): 1348-1363. doi:10.1007/s40843-020-1275-4
40. Xiu, H., Xu, P., Wen, P. et al. Rapid degradation of InGaN/GaN green laser diodes. Superlattices and Microstructures, 2020. doi:10.1016/j.spmi.2020.106517
41. Jiang, L., Liu, J., Zhang, L. et al. Suppression of substrate mode in GaN-based green laser diodes. Optics Express, 2020, 28(10): 15497-15504. doi:10.1364/OE.389880
42. Zhou, M., Liang, F., Zhao, D.G. Effects of quantum well thickness and aluminum content of electron blocking layer on InGaN-based laser diodes. Journal of Materials Science: Materials in Electronics, 2020, 31(8): 5814-5819. doi:10.1007/s10854-019-02539-8
43. Yu, J., Wang, L., Hao, Z. et al. Van der Waals Epitaxy of III-Nitride Semiconductors Based on 2D Materials for Flexible Applications. Advanced Materials, 2020, 32(15): 1903407. doi:10.1002/adma.201903407
44. Hu, L., Ren, X., Liu, J. et al. High-power hybrid GaN-based green laser diodes with ITO cladding layer. Photonics Research, 2020, 8(3): 279-285. doi:10.1364/PRJ.381262
45. Liang, F., Zhao, D., Jiang, D. et al. Performance deterioration of GaN-based laser diode by V-pits in the upper waveguide layer. Nanophotonics, 2020, 9(3): 667-674. doi:10.1515/nanoph-2019-0449
46. Banayeem, H., Damm, M., Mu, Y. et al. Angular resolved far-field dynamics of (Al, In)GaN laser diodes. Proceedings of SPIE - The International Society for Optical Engineering, 2020. doi:10.1117/12.2546188
47. Liu, S., Yang, J., Zhao, D. et al. Uniform-Sized Indium Quantum Dots Grown on the Surface of an InGaN Epitaxial Layer by a Two-Step Cooling Process. Nanoscale Research Letters, 2019, 14(1): 280. doi:10.1186/s11671-019-3095-7
48. Gu, Y., Wang, F., Liu, Y. Structural optimization of 273nm deep ultraviolet laser in wave guide. 2019. doi:10.1109/ISNE.2019.8896409
49. Poncé, S., Jena, D., Giustino, F. Hole mobility of strained GaN from first principles. Physical Review B, 2019, 100(8): 085204. doi:10.1103/PhysRevB.100.085204
50. Tian, A., Liu, J., Zhou, R. et al. Green laser diodes with constant temperature growth of InGaN/GaN multiple quantum well active region. Applied Physics Express, 2019, 12(6): 064007. doi:10.7567/1882-0786/ab21b6
51. Jiang, L., Liu, J., Tian, A. et al. Influence of substrate misorientation on carbon impurity incorporation and electrical properties of p-GaN grown by metalorganic chemical vapor deposition. Applied Physics Express, 2019, 12(5): 055503. doi:10.7567/1882-0786/ab0da2
52. Laxmi, N., Routray, S.R., Pradhan, K.P. InGaN/Si Hetero-Junction Tandem Solar Cell with Self Tunneling Effect: Proposal Analysis. 2019. doi:10.1109/EUROSOI-ULIS45800.2019.9041915
53. Holguín-Lerma, J.A., Ng, T.K., Ooi, B.S. Narrow-line InGaN/GaN green laser diode with high-order distributed-feedback surface grating. Applied Physics Express, 2019, 12(4): 042007. doi:10.7567/1882-0786/ab0a57
54. Liu, S.T., Yang, J., Zhao, D.G. et al. The compensation role of deep defects in the electric properties of lightly Si-doped GaN. Journal of Alloys and Compounds, 2019. doi:10.1016/j.jallcom.2018.09.333
55. Jamal, M.T., Hansen, A.K., Andersen, P.E. et al. Comparative study of the pump beam quality effect on the slope efficiency in Kerr‐lens mode‐locked Ti:sapphire laser. 2019.
56. Liang, F., Zhao, D., Jiang, D. et al. Influence of small indium content in quantum barriers on the luminescence properties of InGaN/InGaN double-quantum wells. Optical Materials Express, 2019, 9(10): 3941-3951. doi:10.1364/OME.9.003941
57. Arakawa, K., Miyoshi, K., Iida, R. et al. 450 nm GaInN ridge stripe laser diodes with AlInN/AlGaN multiple cladding layers. Japanese Journal of Applied Physics, 2019, 58(SC): SCCC28. doi:10.7567/1347-4065/ab12ca
58. Tao, R., Arakawa, Y. Impact of quantum dots on III-nitride lasers: A theoretical calculation of threshold current densities. Japanese Journal of Applied Physics, 2019, 58(SC): SCCC31. doi:10.7567/1347-4065/ab1068
59. Liang, Y., Liu, J., Ikeda, M. et al. Effect of inhomogeneous broadening on threshold current of GaN-based green laser diodes. Journal of Semiconductors, 2019, 40(5): 052802. doi:10.1088/1674-4926/40/5/052802
60. Xing, Y., Zhao, D., Jiang, D. et al. Carrier Redistribution Between Two Kinds of Localized States in the InGaN/GaN Quantum Wells Studied by Photoluminescence. Nanoscale Research Letters, 2019. doi:10.1186/s11671-019-2919-9
61. Liu, S.-T., Yang, J., Zhao, D.-G. et al. Influence of carrier gas H2 flow rate on quality of p-type GaN epilayer grown and annealed at lower temperatures. Chinese Physics B, 2018, 27(12): 127803. doi:10.1088/1674-1056/27/12/127803
62. Liang, F., Zhao, D., Jiang, D. et al. Role of si and C impurities in yellow and blue luminescence of unintentionally and Si-doped GaN. Nanomaterials, 2018, 8(12): 1026. doi:10.3390/nano8121026
63. Liu, S.T., Yang, J., Zhao, D.G. et al. The influence of thermal annealing process after GaN cap layer growth on structural and optical properties of InGaN/InGaN multi-quantum wells. Optical Materials, 2018. doi:10.1016/j.optmat.2018.10.034
64. Han, X., Luo, H., Yang, H. et al. Effects of surface migration on InGaN/GaN multiple quantum wells selectively grown on periodic stripe openings separated by large SiO2 covered spacing on Si (111) substrates. Materials Science in Semiconductor Processing, 2018. doi:10.1016/j.mssp.2018.05.040
65. Yang, J., Zhao, D.G., Jiang, D.S. et al. Improvement of thermal stability of InGaN/GaN multiple-quantum-well by reducing the density of threading dislocations. Optical Materials, 2018. doi:10.1016/j.optmat.2018.08.030
66. Liu, W., Yang, J., Zhao, D. et al. Energy band tilt in ultra-thin InGaN film affected by the surface adsorption and desorption. Applied Surface Science, 2018. doi:10.1016/j.apsusc.2018.05.015
67. Liang, F., Zhao, D., Jiang, D. et al. Carbon-related defects as a source for the enhancement of yellow luminescence of unintentionally doped GaN. Nanomaterials, 2018, 8(9): 744. doi:10.3390/nano8090744
68. Peng, L., Zhao, D., Jiang, D. et al. Anomalous electroluminescent blue-shift behavior induced by well widths variance and localization effect in InGaN/GaN multi-quantum wells. Optics Express, 2018, 26(17): 21736-21744. doi:10.1364/OE.26.021736
69. Yang, J., Zhao, D.G., Jiang, D.S. et al. Enhancing the performance of InGaN/GaN multiple quantum well blue laser diodes by suppressing the overflow of holes. Superlattices and Microstructures, 2018. doi:10.1016/j.spmi.2018.05.044
70. Liang, F., Yang, J., Zhao, D.G. et al. Resistivity reduction of low temperature grown p-Al0.09Ga0.91N by suppressing the incorporation of carbon impurity. AIP Advances, 2018, 8(8): 085005. doi:10.1063/1.5046875
71. Yang, J., Zhao, D., Liu, Z. et al. Suppression the Leakage of Optical Field and Carriers in GaN-Based Laser Diodes by Using InGaN Barrier Layers. IEEE Photonics Journal, 2018, 10(4): 8419238. doi:10.1109/JPHOT.2018.2859802
72. Liang, F., Zhao, D.-G., Jiang, D.-S. et al. Performance enhancement of the GaN-based laser diode by using an unintentionally doped GaN upper waveguide. Japanese Journal of Applied Physics, 2018, 57(7): 070307. doi:10.7567/JJAP.57.070307
73. Gagliano, L., Kruijsse, M., Schefold, J.D.D. et al. Efficient Green Emission from Wurtzite AlxIn1- xP Nanowires. Nano Letters, 2018, 18(6): 3543-3549. doi:10.1021/acs.nanolett.8b00621
74. Xing, Y., Zhao, D., Jiang, D. et al. The role of temperature ramp-up time before barrier layer growth in optical and structural properties of InGaN/GaN multi-quantum wells. Superlattices and Microstructures, 2018. doi:10.1016/j.spmi.2018.03.033
75. Liu, W., Zhao, D., Jiang, D. et al. Effect of carrier transfer process between two kinds of localized potential traps on the spectral properties of InGaN/GaN multiple quantum wells. Optics Express, 2018, 26(3): 3424-3434. doi:10.1364/OE.26.003427
76. Huang, J.-L., Yi, L.-K., Zhou, M. et al. Barrier Thickness Designing of InGaN/GaN Multiple Quantum Well for Electroluminescence. Faguang Xuebao/Chinese Journal of Luminescence, 2018, 39(2): 208-213. doi:10.3788/fgxb20183902.0208
77. Xing, Y., Zhao, D.-G., Jiang, D.-S. et al. Suppression of electron and hole overflow in GaN-based near-ultraviolet laser diodes. Chinese Physics B, 2018, 27(2): 028101. doi:10.1088/1674-1056/27/2/028101
78. Liang, F., Zhao, D., Jiang, D. et al. Improvement of slope efficiency of GaN-Based blue laser diodes by using asymmetric MQW and InxGa1-xN lower waveguide. Journal of Alloys and Compounds, 2018. doi:10.1016/j.jallcom.2017.09.328
79. Ben, J., Sun, X., Jia, Y. et al. Defect evolution in AlN templates on PVD-AlN/sapphire substrates by thermal annealing. CrystEngComm, 2018, 20(32): 4623-4629. doi:10.1039/c8ce00770e
80. Liang, F., Yang, Y., Zhao, D. et al. Influence of hydrogen impurity on the resistivity of low temperature grown p-AlxGa1-xN layer (0.08 ≤ x ≤ 0.104). Superlattices and Microstructures, 2018. doi:10.1016/j.spmi.2017.12.002
81. Liu, S.T., Yang, J., Zhao, D.G. et al. Mg concentration profile and its control in the low temperature grown Mg-doped GaN epilayer. Superlattices and Microstructures, 2018. doi:10.1016/j.spmi.2017.11.057
82. Huang, J., Liu, W., Yi, L. et al. The influence of well thickness on the photoluminescence properties of blue-violet light emitting InGaN/GaN multiple quantum wells. Superlattices and Microstructures, 2018. doi:10.1016/j.spmi.2017.11.036
83. Yang, J., Liu, S.T., Wang, X.W. et al. Enhancement of the emission efficiency of InGaN films by suppressing the incorporation of unintentional gallium atoms. Superlattices and Microstructures, 2018. doi:10.1016/j.spmi.2017.09.039
84. Liang, F., Zhao, D.-G., Jiang, D.-S. et al. Output light power of InGaN-based violet laser diodes improved by using a u-InGaN/GaN/AlGaN multiple upper waveguide. Chinese Physics B, 2017, 26(12): 124210. doi:10.1088/1674-1056/26/12/124210
85. Liang, F., Zhao, D., Jiang, D. et al. New design of upper waveguide with unintentionally doped InGaN layer for InGaN-based laser diode. Optics and Laser Technology, 2017. doi:10.1016/j.optlastec.2017.07.012
86. Liang, F., Zhao, D.-G., Jiang, D.-S. et al. Different influences of u-InGaN upper waveguide on the performance of GaN-based blue and green laser diodes. Chinese Physics B, 2017, 26(11): 114203. doi:10.1088/1674-1056/26/11/114203
87. Cheng, Y., Liu, J., Zhang, L. et al. Suppression of recombination in waveguide in c-plane InGaN-based green laser diodes. Superlattices and Microstructures, 2017. doi:10.1016/j.spmi.2017.08.005
88. Yi, L.-K., Huang, J.-L., Zhou, M. et al. Spectral Response and Dark Current of p-i-n Type and Schottky Barrier GaN-based Ultraviolet Detectors. Faguang Xuebao/Chinese Journal of Luminescence, 2017, 38(10): 1327-1331. doi:10.3788/fgxb20173810.1327
89. Liu, S.-T., Zhao, D.-G., Yang, J. et al. The residual C concentration control for low temperature growth p-type GaN. Chinese Physics B, 2017, 26(10): 107102. doi:10.1088/1674-1056/26/10/107102
90. Xing, Y., Zhao, D.G., Jiang, D.S. et al. Suppression of hole leakage by adding a hole blocking layer prior to the first quantum barrier in GaN-based near-ultraviolet laser diodes. Physica Status Solidi (A) Applications and Materials Science, 2017, 214(10): 1700320. doi:10.1002/pssa.201700320
91. Tong, Z., Song, S., Jia, S. et al. Nonsequential Speckle Reduction Method by Generating Uncorrelated Laser Subbeams with Equivalent Intensity Using a Reflective Spatial Light Modulator. IEEE Photonics Journal, 2017, 9(5): 7994593. doi:10.1109/JPHOT.2017.2732507
92. Tian, A., Liu, J., Zhang, L. et al. Significant increase of quantum efficiency of green InGaN quantum well by realizing step-flow growth. Applied Physics Letters, 2017, 111(11): 112102. doi:10.1063/1.5001185
93. Routray, S.R., Lenka, T.R. Effect of metal-fingers/doped-ZnO transparent electrode on performance of GaN/InGaN solar cell. Journal of Semiconductors, 2017, 38(9): 092001. doi:10.1088/1674-4926/38/9/092001
94. Liu, W., Zhao, D., Jiang, D. et al. Influence of Indium Content on the Unintentional Background Doping and Device Performance of InGaN/GaN Multiple-Quantum-Well Solar Cells. IEEE Journal of Photovoltaics, 2017, 7(4): 1017-1027. doi:10.1109/JPHOTOV.2017.2699199
95. Yang, J., Zhao, D.-G., Jiang, D.-S. et al. Physical implications of activation energy derived from temperature dependent photoluminescence of InGaN-based materials. Chinese Physics B, 2017, 26(7): 077101. doi:10.1088/1674-1056/26/7/077101
96. Liang, F., Zhao, D., Jiang, D. et al. Improvement of Ohmic contact to p-GaN by controlling the residual carbon concentration in p++-GaN layer. Journal of Crystal Growth, 2017. doi:10.1016/j.jcrysgro.2017.03.009
97. Liang, F., Zhao, D., Jiang, D. et al. Influence of residual carbon impurities in a heavily Mg-doped GaN contact layer on an Ohmic contact. Applied Optics, 2017, 56(14): 4197-4200. doi:10.1364/AO.56.004197
98. Zhao, D., Yang, J., Liu, Z. et al. Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes. Journal of Semiconductors, 2017, 38(5): 053001. doi:10.1088/1674-4926/38/5/051001
99. Yang, J., Zhao, D.G., Jiang, D.S. et al. Performance of InGaN based green laser diodes improved by using an asymmetric InGaN/InGaN multi-quantum well active region. Optics Express, 2017, 25(9): 9595-9602. doi:10.1364/OE.25.009595
100. Liu, W., Zhao, D., Jiang, D. et al. Increase of photogenerated carriers in thick quantum wells in InGaN solar cells verified by laser-assisted capacitance-voltage measurement. Materials Research Express, 2017, 4(4): 045906. doi:10.1088/2053-1591/aa6bcb
101. Yang, J., Zhao, D., Jiang, D. et al. Performance Enhanced by Inserting an InGaN/GaN Shallower-Quantum Well Layer in InGaN Based Green Laser Diodes. IEEE Photonics Journal, 2017, 9(2): 7874165. doi:10.1109/JPHOT.2017.2679719
102. Liu, S.T., Yang, J., Zhao, D.G. et al. Different annealing temperature suitable for different Mg doped P-GaN. Superlattices and Microstructures, 2017. doi:10.1016/j.spmi.2017.02.016
103. Yang, J., Zhao, D.G., Jiang, D.S. et al. Investigation on the corrosive effect of NH 3 during InGaN/GaN multi-quantum well growth in light emitting diodes. Scientific Reports, 2017. doi:10.1038/srep44850
104. Li, X., Liu, Z.S., Zhao, D.G. et al. Evolution of differential efficiency in blue InGaN laser diodes before and after a lasing threshold. Applied Optics, 2017, 56(9): 2462-2466. doi:10.1364/AO.56.002462
105. Tong, Z., Shen, W., Song, S. et al. Combination of micro-scanning mirrors and multi-mode fibers for speckle reduction in high lumen laser projector applications. Optics Express, 2017, 25(4): 3795-3804. doi:10.1364/OE.25.003795
106. Liang, F., Zhao, D., Jiang, D. et al. Suppression of optical field leakage to GaN substrate in GaN-based green laser diode. Superlattices and Microstructures, 2017. doi:10.1016/j.spmi.2017.01.012
107. Yang, J., Zhao, D.G., Jiang, D.S. et al. Increasing the indium incorporation efficiency during InGaN layer growth by suppressing the dissociation of NH3. Superlattices and Microstructures, 2017. doi:10.1016/j.spmi.2016.12.025
108. Liu, W., Zhao, D., Jiang, D. et al. Comparative study on the InGaN multiple-quantum-well solar cells assisted by capacitance-voltage measurement with additional laser illumination. Journal of Alloys and Compounds, 2017. doi:10.1016/j.jallcom.2017.07.246
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 10643 Times PDF downloads: 355 Times Cited by: 108 Times

    History

    Received: 10 October 2016 Revised: Online: Published: 01 November 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lingrong Jiang, Jianping Liu, Aiqin Tian, Yang Cheng, Zengcheng Li, Liqun Zhang, Shuming Zhang, Deyao Li, M. Ikeda, Hui Yang. GaN-based green laser diodes[J]. Journal of Semiconductors, 2016, 37(11): 111001. doi: 10.1088/1674-4926/37/11/111001 ****L R Jiang, J P Liu, A Q Tian, Y Cheng, Z C Li, L Q Zhang, S M Zhang, D Y Li,M. Ikeda, H Yang. GaN-based green laser diodes[J]. J. Semicond., 2016, 37(11): 111001. doi:  10.1088/1674-4926/37/11/111001.
      Citation:
      Lingrong Jiang, Jianping Liu, Aiqin Tian, Yang Cheng, Zengcheng Li, Liqun Zhang, Shuming Zhang, Deyao Li, M. Ikeda, Hui Yang. GaN-based green laser diodes[J]. Journal of Semiconductors, 2016, 37(11): 111001. doi: 10.1088/1674-4926/37/11/111001 ****
      L R Jiang, J P Liu, A Q Tian, Y Cheng, Z C Li, L Q Zhang, S M Zhang, D Y Li,M. Ikeda, H Yang. GaN-based green laser diodes[J]. J. Semicond., 2016, 37(11): 111001. doi:  10.1088/1674-4926/37/11/111001.

      GaN-based green laser diodes

      DOI: 10.1088/1674-4926/37/11/111001
      Funds:

      National Key Research and Development Progress of China Nos. 2016YFB0401803, 2016YFB0402002

      Science and Technology Support Project of Jiangsu Province No. BE2013007

      Strategic Priority Research Program of the Chinese Academy of Science No. XDA09020401

      National Natural Science Foundation of China Nos. 61574160, 61334005

      Project supported by the National Key Research and Development Progress of China (Nos. 2016YFB0401803, 2016YFB0402002), the National Natural Science Foundation of China (Nos. 61574160, 61334005), the Strategic Priority Research Program of the Chinese Academy of Science (No. XDA09020401), and the Science and Technology Support Project of Jiangsu Province (No. BE2013007).

      More Information
      • Corresponding author: LiuJianping,jpliu2010@sinano.ac.cn
      • Received Date: 2016-10-10
      • Published Date: 2016-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return