Citation: |
Yuliang Huang, Lian Zhang, Zhe Cheng, Yun Zhang, Yujie Ai, Yongbing Zhao, Hongxi Lu, Junxi Wang, Jinmin Li. AlGaN/GaN high electron mobility transistors with selective area grown p-GaN gates[J]. Journal of Semiconductors, 2016, 37(11): 114002. doi: 10.1088/1674-4926/37/11/114002
****
Y L Huang, L Zhang, Z Cheng, Y Zhang, Y J Ai, Y B Zhao, H X Lu, J X Wang, J M Li. AlGaN/GaN high electron mobility transistors with selective area grown p-GaN gates[J]. J. Semicond., 2016, 37(11): 114002. doi: 10.1088/1674-4926/37/11/114002.
|
AlGaN/GaN high electron mobility transistors with selective area grown p-GaN gates
doi: 10.1088/1674-4926/37/11/114002
More Information-
Abstract
We report a selective area growth (SAG) method to define the p-GaN gate of AlGaN/GaN high electron mobility transistors (HEMTs) by metal-organic chemical vapor deposition. Compared with Schottky gate HEMTs, the SAG p-GaN gate HEMTs show more positive threshold voltage (Vth) and better gate control ability. The influence of Cp2Mg flux of SAG p-GaN gate on the AlGaN/GaN HEMTs has also been studied. With the increasing Cp2Mg from 0.16 μmol/min to 0.20 μmol/min, the Vth raises from -67 V to -37 V. The maximum transconductance of the SAG HEMT at a drain voltage of 10 V is 113.9 mS/mm while that value of the Schottky HEMT is 51.6 mS/mm. The SAG method paves a promising way for achieving p-GaN gate normally-off AlGaN/GaN HEMTs without dry etching damage.-
Keywords:
- AlGaN/GaN,
- selective area growth,
- normally off,
- HEMT
-
References
[1] Ambacher O, Foutz B, Smart J, et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J Appl Phys, 2000, 87(1):334 doi: 10.1063/1.371866[2] Tan Xin, Lü Yuanjie, Gu Guodong, et al. High performance AlGaN/GaN HEMTs with AlN/SiNx passivation. Journal of Semiconductors, 2015, 36(7):074008 doi: 10.1088/1674-4926/36/7/074008[3] Khan M A, Chen Q, Sun C J, et al. Enhancement and depletion mode GaN/AlGaN heterostructure field effect transistors. Appl Phys Lett, 1996, 68(4):514 doi: 10.1063/1.116384[4] Wang Zheli, Zhou Jianjun, Kong Yuechan, et al. Thin-barrier enhancement-mode AlGaN/GaN MIS-HEMT using ALD Al2O3 as gate insulator. Journal of Semiconductors, 2015, 36(9):094004 doi: 10.1088/1674-4926/36/9/094004[5] Cai Y, Zhou Y G, Lau K M, et al. Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment:from depletion mode to enhancement mode. IEEE Trans Electron Devices, 2006, 53(9):2207 doi: 10.1109/TED.2006.881054[6] Su L Y, Lee F, Huang J J. Enhancement-mode GaN-based highelectron mobility transistors on the Si substrate with a p-type GaN cap layer. IEEE Trans Electron Devices, 2014, 61(2):460 doi: 10.1109/TED.2013.2294337[7] Hwang I, Choi H, Lee J, et al. 1.6 kV, 2.9 mΩ·cm2 normally-off p-GaN HEMT device. Proceedings of the 201224th International Symposium on Power Semiconductor Devices and ICs, 2012:41[8] Hwang I, Kim J, Choi H S, et al. p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current. IEEE Electron Device Lett, 2013, 34(2):202 doi: 10.1109/LED.2012.2230312[9] Deguchi T, Kikuchi T, Arai M, et al. High on/off current ratio pInGaN/AlGaN/GaN HEMTs. IEEE Electron Device Lett, 2012,33(9):1249 doi: 10.1109/LED.2012.2204854[10] Hilt O, Brunner F, Cho E, et al. Normally-off high-voltage p-GaN gate GaN HFET with carbon-doped buffer. Proceedings of the 23rd International Symposium on Power Semiconductor Devices & IC's, 2011:239[11] Mizutani T, Yamada H, Kishimoto S, et al. Normally off AlGaN/GaN high electron mobility transistors with p-InGaN cap layer. J Appl Phys, 2013, 113(3):034502 doi: 10.1063/1.4775494[12] Lanford W B, Tanaka T, Otoki Y, et al. Recessed-gate enhancement-mode GaN HEMT with high threshold voltage. Electron Lett, 2005, 41(7):449 doi: 10.1049/el:20050161[13] Wakejima A, Ando A, Watanabe A, et al. Normally off AlGaN/GaN HEMT on Si substrate with selectively dry-etched recessed gate and polarization-charge-compensation ı-doped GaN cap layer. Appl Phys Express, 2015, 8(2):026502 doi: 10.7567/APEX.8.026502[14] Lee Y C, Wang C Y, Kao T T, et al. Threshold voltage control of recessed-gate Ⅲ-N HFETs using an electrode-less wet etching technique. CS MANTECH Conference, 2012[15] Yao Y, He Z Y, Yang F, et al. Normally-off GaN recessed-gate MOSFET fabricated by selective area growth technique. Appl Phys Express, 2014, 7(1):016502 doi: 10.7567/APEX.7.016502[16] Lee Y C, Kao T T, Merola J J, et al. A remote-oxygen-plasma surface treatment technique for Ⅲ-nitride heterojunction fieldeffect transistors. IEEE Trans Electron Devices, 2014, 61(2):493 doi: 10.1109/TED.2013.2295828[17] Tsuyukuchi N, Nagamarsu K, Hirosi Y, et al. Low-leakagecurrent enhancement-mode AlGaN/GaN heterostructure fieldeffect transistor using p-type gate contact. Jpn J Appl Phys, Part 2, 2006, 45(8-11):L319 doi: 10.1143/JJAP.45.L319/pdf[18] Fujii T, Tsuyukuchi N, Hirose Y, et al. Fabrication of enhancement-mode AlxGa1-xN/GaN junction heterostructure field-effect transistors with p-type GaN gate contact. Physica Status Solidi (c), 2007, 4(7):2708 doi: 10.1002/(ISSN)1610-1642[19] Fujii T, Tsuyukuchi N, Iwaya M, et al. High on/off ratio in enhancement-mode AlxGa1-xN/GaN junction heterostructure field-effect transistors with p-type GaN gate contact. Jpn J Appl Phys, 2006, 45(37-41):L1048 http://cn.bing.com/academic/profile?id=1989037470&encoded=0&v=paper_preview&mkt=zh-cn[20] Hao Y. Nitride wide band gap semiconductor materials and electronic devices. Beijing:Science Press, 2013[21] Uemoto Y, Hikita M, Ueno H, et al. Gate injection transistor (GIT)-a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans Electron Devices, 2007, 54(12):3393 doi: 10.1109/TED.2007.908601 -
Proportional views