Citation: |
Min Liu, Yuming Zhang, Hongliang Lü, Yimen Zhang. Simulated study on the InP/InGaAs DHBT under proton irradiation[J]. Journal of Semiconductors, 2016, 37(11): 114005. doi: 10.1088/1674-4926/37/11/114005
****
M Liu, Y M Zhang, H Lü, Y M Zhang. Simulated study on the InP/InGaAs DHBT under proton irradiation[J]. J. Semicond., 2016, 37(11): 114005. doi: 10.1088/1674-4926/37/11/114005.
|
Simulated study on the InP/InGaAs DHBT under proton irradiation
doi: 10.1088/1674-4926/37/11/114005
More Information-
Abstract
A 3D model simulation of InP/InGaAs/InP DHBT is reported in this paper. A comprehensive set of built-in physical models are described, including Stratton's hydrodynamic model, high-fields mobility model and thermionic emission model. A mixed-mode environment is required for AC simulation instead of simulating an isolated HBT, in which the HBT is embedded in an external circuit, and the circuit voltage and current equations are solved along with the Poisson equation and transport equations. In AC simulation, simulator Sentaurus provides the computation of the small signal admittance Y matrix. From the results of Y matrix, the small signal equivalent circuit is constructed with the conductance and capacitance obtained from Y matrix, and the AC parameters, such as S-parameters, will be calculated. The small signal AC characteristics of InP/InGaAs DHBTs under proton irradiation are simulated with different fluences of proton irradiation. Simulation results show that the maximum oscillation frequency will be degraded when fluence of proton irradiation is increased. -
References
[1] Hacker J, Young A, Griffith Z, et al. THz MMICs based on InP HBT technology. Proc IEEE MTT-S, 2010:1126 http://cn.bing.com/academic/profile?id=2144177517&encoded=0&v=paper_preview&mkt=zh-cn[2] Godin J, Nodjiadjim V, Riet M, et al. Submicron InP DHBT technology for high-speed high-swing mixed-signal ICs. Proc IEEE CSIC, 2008:1 http://cn.bing.com/academic/profile?id=2104517116&encoded=0&v=paper_preview&mkt=zh-cn[3] Driad R, Rosenzweig J, Makon R E, et al. InP DHBT-based IC technology for 100-Gb/s Ethernet. IEEE Trans Electron Devices, 2011, 58(8):2604 doi: 10.1109/TED.2011.2157927[4] Dupuy J Y, Jorge F, Riet M, et al. InP DHBT transimpedance amplifiers with automatic offset compensation for 100 Gbit/s optical communications. Proc EuMIC, 2010:341 http://cn.bing.com/academic/profile?id=1569343069&encoded=0&v=paper_preview&mkt=zh-cn[5] Zolper J C. Challenge and opportunities for InP HBT mixed signal circuits technology. Proc IEEE Int Conference Indium Phosphide and Related Materials, 2003:8[6] [7] Liu Min, Zhang Yuming, Lü Hongliang, et al. Investigation of proton irradiation effects on InP/InGaAs double heterojunction bipolar transistors. Solid State Electron, 2015, 109:52 doi: 10.1016/j.sse.2015.03.008[8] Chiang H W, Rode J C, Choudhary P, et al. Lateral carrier diffusion and current gain in terahertz InGaAs/InP doubleheterojunction bipolar transistors. J Appl Phys, 2014, 115:034513 doi: 10.1063/1.4862405[9] Synopsys, Handbook:Part 15, DESSIS, ISE Integrated System Engineering, Release 9.0, 2003[10] Tao N G, Liu H G, Bolognesi C R. Impact of surface state modeling on the characteristics of InP/GaAsSb/InP DHBTs. Solid-State Electron, 2007, 51:995 doi: 10.1016/j.sse.2007.04.011[11] Ghosh S, Grandchamp B, Kone G A, et al. Investigation of the degradation mechanisms of InP/InGaAs DHBT under bias stress conditions to achieve electrical aging model for circuit design. Microelectron Reliab, 2011, 50:1736 http://cn.bing.com/academic/profile?id=2085944206&encoded=0&v=paper_preview&mkt=zh-cn[12] Yu Le, Zheng Yingkui, Zhang Sheng, et al. Small-signal model parameter extraction for AlGaN/GaN HEMT. Journal of Semiconductors, 2016, 37(3):034003 doi: 10.1088/1674-4926/37/3/034003[13] Zhang Jincan, Liu Bo, Zhang Leiming, et al. A rigorous peeling algorithm for direct parameter extraction procedure of HBT small-signal equivalent circuit. Analog Integr Circ Sig Process, 2015, 85:405 doi: 10.1007/s10470-015-0586-z[14] Laux S E. Application of sinusoidal steady-state analysis to numerical device simulation. In:New Problems and New Solutions for Device and Process Modelling. Dublin:Boole Press, 1985:60[15] Liu W. Handbook of Ⅲ-V heterojunction bipolar transistors. Wiley Interscience, 1998[16] Zhou Zhijiang, Ren Kun, Liu Jun, et al. Frequency stability of InP HBT over 0.2 to 220 GHz. Journal of Semiconductors, 2015, 36(2):024006 doi: 10.1088/1674-4926/36/2/024006[17] Liu Min, Zhang Yuming, Lü Hongliang, et al. Proton irradiation effects on InGaP GaAs single heterojunction bipolar transistors. Solid State Electron, 2014, 96:9 doi: 10.1016/j.sse.2014.03.010[18] Jiang Ningyue, Ma Zhenqiang, Ma Pingxi, et al. Impact of proton radiation on the large-signal power performance of SiGe power HBTs. IEEE Trans Nucl Sci, 2006, 53(4):2361 doi: 10.1109/TNS.2006.879016 -
Proportional views