Citation: |
Zuyin Zhang, Guofeng Song. High enhancement factor of Au nano triangular prism structure for surface enhanced coherent anti-Stokes Raman scattering[J]. Journal of Semiconductors, 2017, 38(2): 022001. doi: 10.1088/1674-4926/38/2/022001
****
Z Y Zhang, G F Song. High enhancement factor of Au nano triangular prism structure for surface enhanced coherent anti-Stokes Raman scattering[J]. J. Semicond., 2017, 38(2): 022001. doi: 10.1088/1674-4926/38/2/022001.
|
High enhancement factor of Au nano triangular prism structure for surface enhanced coherent anti-Stokes Raman scattering
DOI: 10.1088/1674-4926/38/2/022001
More Information
-
Abstract
Coherent anti-Stokes Raman scattering spectroscopy(CARS) is a well-known detecting tool in biosensing and nonlinear spectroscopy. It can provide a non-invasive alternative without the need for exogenous labels, while the enhancement factor for surface plasmon resonances(SPR) are extensively used to increase the local field close to the oscillators and which can obtain high enhancement. In this work, we investigate the enhancement factor of our structure for surface-enhanced coherent anti-Stokes Raman scattering. The absorption spectrum of the structure has been studied, a wide range of absorption has been realized. The enhancement can be as high as 1016 over standard CARS. Our design is very useful for improving the enhancement factor of surface-enhanced coherent anti-Stokes Raman scattering. -
References
[1] Liu W L, Li T H. Compositional dependence of Raman frequencies in SixGe1-x alloys. J Semicond, 2012, 33(11):112001 doi: 10.1088/1674-4926/33/11/112001[2] Zhong Q H. Studies of electron Raman scattering in a HgS/CdS spherical quantum dot quantum well. J Semicond, 2013, 34(12):122002 doi: 10.1088/1674-4926/34/12/122002[3] Kneipp K. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett, 1997, 78, 1667 doi: 10.1103/PhysRevLett.78.1667[4] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys Rev Lett, 1999, 82:4142 doi: 10.1103/PhysRevLett.82.4142[5] Haes A J. A nanoscale optical biosensor:the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B, 2004, 108:109 doi: 10.1021/jp0361327[6] Mayer K M, Hafner J H. Localized surface plasmon resonance sensors. Chem Rev, 2011, 111:3828 doi: 10.1021/cr100313v[7] Tolles W M. A review of the theory and application of coherent anti-Stokes Raman spectroscopy (CARS). Appl Spectros, 1977, 31:253 doi: 10.1366/000370277774463625[8] Guo B S, Song G F, Chen L H, et al. Numerical study of surface plasmons nano-optical antenna and its array. J Semicond, 2008, 29(12):2340[9] Xiao G L, Yang H Y. The effect of array periodicity on the filtering characteristics of metal/dielectric photonic crystals. J Semicond, 2011, 32(4):044004 doi: 10.1088/1674-4926/32/4/044004[10] Li L Q, Lv Y W. Surface-plasmon-enhanced light transmission intensity with a basic grating in GaN-based LED. J Semicond, 2014, 35(4):043003 doi: 10.1088/1674-4926/35/4/043003[11] Koo T, Chan S. Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering. Opt Lett, 2005, 30:1024 doi: 10.1364/OL.30.001024[12] Namboodiri V. Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine. VibSpectroscopy, 2010:8 http://cn.bing.com/academic/profile?id=30a6b6a65952a0bc65ccb1ebb25c06a4&encoded=0&v=paper_preview&mkt=zh-cn[13] Addison C J. Tuning gold nanoparticle self-assembly for optimum coherent anti-Stokes Raman scattering and second harmonic generation response. J Phys Chem C, 2009, 113:3586 doi: 10.1021/jp809579b[14] Chew H. Surface enhancement of coherent anti-Stokes Raman scattering by colloidal spheres. J Opt Soc Am B, 1984, 6:4370 http://cn.bing.com/academic/profile?id=41e24340a3af57400280be884a49daf1&encoded=0&v=paper_preview&mkt=zh-cn[15] Steuwe C. Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces. Nano Lett, 2011, 11:5339 doi: 10.1021/nl202875w[16] Tip A. Linear dispersive dielectrics as limits of Drude-Lorentz systems. Phys Rev E, 2004, 69:016610 doi: 10.1103/PhysRevE.69.016610[17] Zhang J, Cai L K, Bai W L, et al. Hybrid waveguide-plasmon resonances in gold pillar arrays on top of a dielectric waveguide. Opt Lett, 2010, 35:20 http://cn.bing.com/academic/profile?id=923d7481fa2cf0718c88b666c365bff0&encoded=0&v=paper_preview&mkt=zh-cn[18] Halas N J. Plasmons in strongly coupled metallic nanostructures. Chem Rev, 2011, 111:3913 doi: 10.1021/cr200061k -
Proportional views