Citation: |
Degang Zhao, Jing Yang, Zongshun Liu, Ping Chen, Jianjun Zhu, Desheng Jiang, Yongsheng Shi, Hai Wang, Lihong Duan, Liqun Zhang, Hui Yang. Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes[J]. Journal of Semiconductors, 2017, 38(5): 051001. doi: 10.1088/1674-4926/38/5/051001
****
D G Zhao, J Yang, Z S Liu, P Chen, J J Zhu, D S Jiang, Y S Shi, H Wang, L H Duan, L Q Zhang, H Yang. Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes[J]. J. Semicond., 2017, 38(5): 051001. doi: 10.1088/1674-4926/38/5/051001.
|
Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes
DOI: 10.1088/1674-4926/38/5/051001
More Information
-
Abstract
Two kinds of continuous-wave GaN-based ultraviolet laser diodes (LDs) operated at room temperature and with different emission wavelengths are demonstrated.The LDs epitaxial layers are grown on GaN substrate by metalorganic chemical vapor deposition, with a 10×600 μm2 ridge waveguide structure.The electrical and optical characteristics of the ultraviolet LDs are investigated under direct-current injection at room temperature. The stimulated emission peak wavelength of first LD is 392.9 nm, the threshold current density and voltage is 1.5 kA/cm2 and 5.0 V, respectively.The output light power is 80 mW under the 4.0 kA/cm2 injection current density. The stimulated emission peak wavelength of second LD is 381.9 nm, the threshold current density the voltage is 2.8 kA/cm2 and 5.5 V, respectively.The output light power is 14 mW under a 4.0 kA/cm2 injection current density. -
References
[1] Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor-phase epitaxial-growth of a high-quality GaN using an AlN buffer layer. Appl Phys Lett, 1986, 48: 353 doi: 10.1063/1.96549[2] Nakamura S, Senoh M, Nagahama S, et al. InGaN-based multiquantum-well-structure laser diodes. Jpn J Appl Phys, Part 2, 1996, 35: L74 doi: 10.1143/JJAP.35.L74[3] Nakamura S. The roles of structural imperfections in InGaNbased blue light-emitting diodes and laser diodes. Science, 1998, 281: 956 doi: 10.1126/science.281.5379.956[4] Hardy M T, Feezell D F, DenBaars S P, et al. Group Ⅲ-nitride lasers: a materials perspective. Mater Today, 2011, 14: 408 doi: 10.1016/S1369-7021(11)70185-7[5] Jiang L R, Liu J P, Tian A Q, et al. GaN-based green laser diodes. J Semicond, 2016, 37: 111001 doi: 10.1088/1674-4926/37/11/111001[6] Nagahama S, Yanamoto T, Sano M, et al. Study of GaN-based laser diodes in near ultraviolet region. Jpn J Appl Phys, 2002, 41: 5 doi: 10.1143/JJAP.41.5[7] Taketomi H, Aoki Y, Takagi Y, et al. Over 1 W record-peakpower operation of a 338 nm AlGaN multiple-quantum-well laser diode on a GaN substrate. Jpn J Appl Phys, 2016, 55: 05FJ05 https://www.researchgate.net/publication/301237819_Over_1_W_record-peak-power_operation_of_a_338_nm_AlGaN_multiple-quantum-well_laser_diode_on_a_GaN_substrate[8] Masui S, Matsuyama Y, Yanamoto T, et al. 365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy. Jpn J Appl Phys, 2003, 42: L1318 doi: 10.1143/JJAP.42.L1318[9] Kneissl M, Treat D W, Teepe M, et al. Continuous-wave operation of ultraviolet InGaN/InAlGaN multiple-quantum-well laser diodes. Appl Phys Lett, 2003, 82: 2386 doi: 10.1063/1.1568160[10] Nagahama S, Yanamoto T, Sano M, et al. Ultraviolet GaN single quantum well laser diodes. Jpn J Appl Phys, Part 2, 2001, 40: L785 doi: 10.1143/JJAP.40.L785[11] Kneissl M, Yang Z H, Teepe M, et al. Ultraviolet semiconductor laser diodes on bulk AlN. J Appl Phys, 2007, 101: 123103 doi: 10.1063/1.2747546[12] Yoshida H, Takagi Y, Kuwabara M, et al. Entirely crack-free ultraviolet GaN/AlGaN laser diodes grown on 2-in. sapphire substrate. Jpn J Appl Phys, 2007, 46: 5782 doi: 10.1143/JJAP.46.5782[13] Kuwabara M, Yamashita Y, Torii K, et al. Laser operation of nitride laser diodes with GaN well layer in 340 nm band. Jpn J Appl Phys, 2013, 52: 08JG10 http://adsabs.harvard.edu/abs/2013JaJAP..52hJG10K[14] Yoshida H, Kuwabara M, Yamashita Y, et al. AlGaN-based laser diodes for the short-wavelength ultraviolet region. New J Phys, 2009, 11: 125013 doi: 10.1088/1367-2630/11/12/125013[15] Yang J, Zhao D G, Jiang D S, et al. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films. J Appl Phys, 2014, 115: 163704 doi: 10.1063/1.4873957[16] Yang J, Zhao D G, Jiang D S, et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in In-GaN/GaN multiple quantum well light emitting diodes. Opt Express, 2016, 24: 13824 doi: 10.1364/OE.24.013824[17] Wu L L, Zhao D G, Jiang D S, et al. Effects of thin heavily Mgdoped GaN capping layer on ohmic contact formation of p-type GaN. Semicond Sci Technol, 2013, 28: 105020 doi: 10.1088/0268-1242/28/10/105020[18] Li X, Zhao D G, Jiang D S, et al. The effectiveness of electron blocking layer in InGaN-based laser diodes with different indium content. Phys Status Solidi A, 2016, 213: 2223 doi: 10.1002/pssa.v213.8[19] Le L C, Zhao D G, Jiang D S, et al. Suppression of electron leakage by inserting a thin undoped InGaN layer prior to electron blocking layer in InGaN-based blue-violet laser diodes. Opt Express, 2014, 22: 11392 doi: 10.1364/OE.22.011392[20] Zhao D G, Jiang D S, Le L C, et al. Performance Improvement of GaN-based violet laser diodes. Chin Phys Lett, 2017, 34: 017101 doi: 10.1088/0256-307X/34/1/017101 -
Proportional views