Citation: |
Tao Cheng, Youwei Wu, Xiaoqin Shen, Wenyong Lai, Wei Huang. Inkjet printed large-area flexible circuits: a simple methodology for optimizing the printing quality[J]. Journal of Semiconductors, 2018, 39(1): 015001. doi: 10.1088/1674-4926/39/1/015001
****
T Cheng, Y W Wu, X Q Shen, W Y Lai, W Huang, Inkjet printed large-area flexible circuits: a simple methodology for optimizing the printing quality[J]. J. Semicond., 2018, 39(1): 015001. doi: 10.1088/1674-4926/39/1/015001.
|
Inkjet printed large-area flexible circuits: a simple methodology for optimizing the printing quality
DOI: 10.1088/1674-4926/39/1/015001
More Information
-
Abstract
In this work, a simple methodology was developed to enhance the patterning resolution of inkjet printing, involving process optimization as well as substrate modification and treatment. The line width of the inkjet-printed silver lines was successfully reduced to 1/3 of the original value using this methodology. Large-area flexible circuits with delicate patterns and good morphology were thus fabricated. The resultant flexible circuits showed excellent electrical conductivity as low as 4.5 Ω/□ and strong tolerance to mechanical bending. The simple methodology is also applicable to substrates with various wettability, which suggests a general strategy to enhance the printing quality of inkjet printing for manufacturing high-performance large-area flexible electronics. -
References
[1] Cheng T, Zhang Y Z, Lai W Y, et al. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv Mater, 2015, 27(22): 3349 doi: 10.1002/adma.v27.22[2] Chen J Y, Lau Y C, Coey J M, et al. High performance MgO-barrier magnetic tunnel junctions for fleixble and wearable spintronic applications. Sci Rep, 2017, 7: 42001 doi: 10.1038/srep42001[3] Li Q, Zhang L N, Tao X M, et al. Review of flexible temperature sensing networks for wearable physiological monitoring. Adv Healthcare Mater, 2017, 6(12): 1601371 doi: 10.1002/adhm.v6.12[4] Gao W, Emaminejad S, Nyein H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529(7587): 509 doi: 10.1038/nature16521[5] Yang J, Zhu K, Ran Y, et al. Joint Admission control and routing via approximate dynamic programming for streaming video over software-defined networking. IEEE Trans Multimed, 2017, 19(3): 619 doi: 10.1109/TMM.2016.2629280[6] He J W, Nuzzo R G, Rogers J A. Inorganic materials and assembly techniques for flexible and stretchable electronics. Proce IEEE, 2015, 103(4): 619 doi: 10.1109/JPROC.2015.2396991[7] Tsuchiya A, Sugama H, Sunamoto T, et al. Low-loss and high-speed transmission flexible printed circuits based on liquid crystal polymer films. Electron Lett, 2012, 48(19): 1216 doi: 10.1049/el.2012.2779[8] Kuang M X, Wang L B, Song Y L. Controllable printing droplets for high-resolution patterns. Adv Mater, 2014, 26(40): 6950 doi: 10.1002/adma.v26.40[9] Cheng T, Zhang Y Z, Yi J P, et al. Inkjet-printed flexible, transparent and aesthetic energy storage devices based on PEDOT: PSS/Ag grid electrodes. J Mater Chem A, 2016, 4(36): 13754 doi: 10.1039/C6TA05319J[10] Yang L, Cheng T, Zeng W J, et al. Inkjet-printed conductive polymer films for optoelectronic devices. Prog Chem, 2015, 27(11): 1615[11] Xing R B, Ye T L, Ding Y, et al. Thickness uniformity adjustment of inkjet printed light-emitting polymer films by solvent mixture. Chin J Chem, 2013, 31(11): 1449 doi: 10.1002/cjoc.v31.11[12] Gaspar C, Passoja S, Olkkonen J, et al. IR-sintering efficiency on inkjet-printed conductive structures on paper substrates. Microelectron Eng, 2016, 149: 135 doi: 10.1016/j.mee.2015.10.006[13] Xie L, Feng Y, Mäntysalo M, et al. Integration of f-MWCNT sensor and printed circuits on paper substrate. IEEE Sens J, 2013, 13(10): 3948 doi: 10.1109/JSEN.2013.2260534[14] Walker S B, Lewis J A. Reactive silver inks for patterning high-conductivity features at mild temperatures. J Am Chem Soc, 2012, 134(3): 1419 doi: 10.1021/ja209267c[15] Noh Y Y, Zhao N, Caironi M, et al. Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat Nanotech, 2007, 2(12): 784 doi: 10.1038/nnano.2007.365[16] Li Z, Wang J, Zhang Y, et al. Closed-air induced composite wetting on hydrophilic ordered nanoporous anodic alumina. Appl Phys Lett, 2010, 97(23): 233107 doi: 10.1063/1.3527076[17] Kim J Y, Pfeiffer K, Voigt A, et al. Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique. J Mater Chem, 2012, 22(7): 3053 doi: 10.1039/c2jm15576a[18] Galliker P, Schneider J, Eghlidi H, et al. Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nat Commun, 2012, 3: 890 doi: 10.1038/ncomms1891 -
Proportional views