Citation: |
Tian Yu, Shuman Liu, Jinchuan Zhang, Bo Xu, Lijun Wang, Junqi Liu, Ning Zhuo, Shenqiang Zhai, Xiaoling Ye, Yonghai Chen, Fengqi Liu, Zhanguo Wang. InAs-based interband cascade lasers at 4.0 μm operating at room temperature[J]. Journal of Semiconductors, 2018, 39(11): 114003. doi: 10.1088/1674-4926/39/11/114003
****
T Yu, S M Liu, J C Zhang, B Xu, L J Wang, J Q Liu, N Zhuo, S Q Zhai, X L Ye, Y H Chen, F Q Liu, Z G Wang, InAs-based interband cascade lasers at 4.0 μm operating at room temperature[J]. J. Semicond., 2018, 39(11): 114003. doi: 10.1088/1674-4926/39/11/114003.
|
InAs-based interband cascade lasers at 4.0 μm operating at room temperature
doi: 10.1088/1674-4926/39/11/114003
More Information-
Abstract
InAs-based interband cascade lasers (ICLs) with InAs plasmon waveguides or InAs/AlSb superlattice (SL) waveguides were demonstrated at emission wavelengths below 4.1 μm. The threshold current densities of the lasers with SL waveguides were 37 A/cm2 at 77 K in continuous wave mode. The operation temperature of these lasers reached room temperature in pulsed mode. Compared with the thick InAs n++ plasmon cladding layer, the InAs/AlSb superlattice cladding layers have greater advantages for ICLs with wavelengths less than 4 μm even in InAs based ICLs because in the short-wavelength region they have a higher confinement factor than InAs plasmon waveguides.-
Keywords:
- interband cascade laser,
- InAs-based,
- InAs/AlSb superlattice
-
References
[1] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science, 1994, 264: 553 doi: 10.1126/science.264.5158.553[2] Vitiello M S, Scalari G, Williams B, et al. Quantum cascade lasers: 20 years of challenges. Opt Express, 2015, 23: 5167 doi: 10.1364/OE.23.005167[3] Hou C C, Zhao Y, Zhang J C, et al. Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm. J Semicond, 2018, 39: 034001 doi: 10.1088/1674-4926/39/3/034001[4] Ciaffoni L, Grilli R, Hancock G, et al. 3.5-μm high-resolution gas sensing employing a LiNbO3 QPM–DFG waveguide module. Appl Phys B, 2008, 94: 517[5] Bauer A, Rössner K, Lehnhardt T, et al. Mid-infrared semiconductor heterostructure lasers for gas sensing applications. Semicond Sci Technol, 2011, 26: 014032 doi: 10.1088/0268-1242/26/1/014032[6] Bandyopadhyay N, Slivken S, Bai Y, et al. High power, continuous wave, room temperature operation of λ ~ 3.4 μm and λ~3.55 μm InP-based quantum cascade lasers. Appl Phys Lett, 2012, 100: 212104 doi: 10.1063/1.4719110[7] Bandyopadhyay N, Bai Y, Gokden B, et al. Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 μm. Appl Phys Lett, 2010, 97: 131117 doi: 10.1063/1.3496489[8] Yang R Q. Infrared laser based on intersubband transitions in quantum well. Superlattices Microstruct, 1995, 17: 77 doi: 10.1006/spmi.1995.1017[9] Kim M, Bewley W W, Canedy C L, et al. High-power continuous-wave interband cascade lasers with 10 active stages. Opt Express, 2015, 23: 9664 doi: 10.1364/OE.23.009664[10] Vurgaftman I, Bewley W W, Canedy C L, et al. Rebalancing of internally generated carriers for mid-infrared cascade lasers with very low power consumption. Nature Commun, 2011, 2: 585 doi: 10.1038/ncomms1595[11] Edlinger M, Weih R, Scheuermann J, et al. Monolithic single mode interband cascade lasers with wide wavelength tunability. Appl Phys Lett, 2016, 109: 201109 doi: 10.1063/1.4968535[12] Weih R, Nähle L, Höfling S, et al. Single mode interband cascade lasers based on lateral metal gratings. Appl Phys Lett, 2014, 105: 071111 doi: 10.1063/1.4893788[13] Yang R Q, Li L, Zhao L, et al. Recent progress in development of InAs-based interband cascade lasers. Proc SPIE, 2013, 8640: 86400Q doi: 10.1117/12.2005271[14] Li L, Jiang Y, Ye H, et al. Low-threshold InAs-based interband cascade lasers operating at high temperatures. Appl Phys Lett, 2015, 106: 251102 doi: 10.1063/1.4922995[15] Tian Z, Yang R Q, Mishima T D, et al. InAs-based interband cascade lasers near 6 μm. Electron Lett, 2008, 45: 48[16] Rassel S M S, Li L, Li Y, et al. High-temperature and low-threshold interband cascade lasers at wavelengths longer than 6 μm. Opt Eng, 2018, 57: 011021[17] Dallner M, Hau F, Höfling S, et al. InAs-based interband-cascade-lasers emitting around 7 μm with threshold current densities below 1 kA/cm2 at room temperature. Appl Phys Lett, 2015, 106: 041108 doi: 10.1063/1.4907002[18] Tian Z, Li L, Ye H, et al. InAs-based interband cascade lasers with emission wavelength at 10.4 μm. Electron Lett, 2012, 48: 113 doi: 10.1049/el.2011.3555 -
Proportional views