Citation: |
Shuai Hu, Xiaoying He, Yan He, Jiale Su, Chong Li, Anqi Hu, Xia Guo. Impact of damping on high speed 850 nm VCSEL performance[J]. Journal of Semiconductors, 2018, 39(11): 114006. doi: 10.1088/1674-4926/39/11/114006
****
S Hu, X Y He, Y He, J L Su, C Li, A Q Hu, X Guo, Impact of damping on high speed 850 nm VCSEL performance[J]. J. Semicond., 2018, 39(11): 114006. doi: 10.1088/1674-4926/39/11/114006.
|
Impact of damping on high speed 850 nm VCSEL performance
doi: 10.1088/1674-4926/39/11/114006
More Information-
Abstract
High speed VCSELs are important optical devices in short-reach optical communication links and interconnects because of their low cost and high modulation speeds. In this paper, the impact of damping on the their static and dynamic characteristics is analyzed and demonstrated. Through the shallow corrosion of the top layer DBR, the VCSELs with different damping is designed and fabricated. With the increase of the surface etch depth from 0 to ~55 nm for 9 μm oxide-aperture VCSEL, the K factor related with the damping is reduced from 0.31 to 0.23 ns−1. When the etch depth of the VCSEL with 9 μm oxide-aperture is decreased to ~25 nm, output power is increased from 4.03 to 4.70 mW and small signal modulation bandwidth is also increased from 15.46 to 16.37 GHz. It shows that there is a tradeoff between damping and differential gain for improving modulation speed. -
References
[1] Kuchta D M, Rylyakov A V, Doany F E, et al. 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link. IEEE Photon Technol Lett, 2015, 27(6): 577 doi: 10.1109/LPT.2014.2385671[2] Haglund E P, Westbergh P, Gustavsson J S, et al. Impact of damping on high-speed large signal VCSEL dynamics. J Lightwave Technol, 2015, 33(4): 795 doi: 10.1109/JLT.2014.2364455[3] Bamiedakis N, Chen J, Penty R V, et al. Bandwidth studies on multimode polymer waveguides for ≥ 25 Gb/s optical interconnects. IEEE Photon Technol Lett, 2014, 26(20): 2004 doi: 10.1109/LPT.2014.2342881[4] Jang J P. Semiconductor laser. Beijing: Publishing House of Electronic Industry, 2000[5] Goyal P, Gupta S, Kaur G. Advances and improvements in VCSEL designing. Electrical, Electronics, and Optimization Techniques (ICEEOT), International Conference on IEEE, 2016: 4240[6] Westbergh P, Gustavsson J S, Kögel B, et al. Impact of photon lifetime on high-speed VCSEL performance. IEEE J Sel Top Quantum Electron, 2011, 17(6): 1603 doi: 10.1109/JSTQE.2011.2114642[7] Michalzik R, ed. VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers. Springer-Verlag Berlin Heidelberg, 2012[8] Haglund E P, Westbergh P, Gustavsson J S, et al. High-speed VCSELs with strong confinement of optical fields and carriers. J Lightwave Technol, 2016, 34(2): 269 doi: 10.1109/JLT.2015.2458935[9] Larisch G, Moser P, Lott A J, et al. Impact of photon lifetime on maximum bitrate and temperature stability of 980 nm VCSELs for 50 Gb/s optical interconnects. IEEE Photonics Conference, 2016: 335[10] Wang J, Savidis I, Friedman G E. Thermal analysis of oxide-confined VCSEL arrays. Microelectron J, 2011, 42(5): 820 doi: 10.1016/j.mejo.2010.11.005[11] Schubert E F, Tu L W, Zydzik G J, et al. Elimination of heterojunction band discontinuities by modulation doping. Appl Phys Lett, 1992, 60(4): 466 doi: 10.1063/1.106636[12] Hadley G R. Effective index model for vertical-cavity surface-emitting lasers. Opt Lett, 1995, 20(13): 1483 doi: 10.1364/OL.20.001483[13] Yang G M, Macdougal M H, Pudikov V, et al. Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers. IEEE Photon Technol Lett, 1995, 7(11): 1228 doi: 10.1109/68.473454[14] Dong J, He X Y, Hu S, et al. Impact of wet etching and dry etching processes on high speed 850 nm vertical cavity surface emitting lasers. Semicond Optoelectron, 2017, 38(6): 826[15] Hamad W, Wanckel S, Hofmann W. Small-signal analysis of ultra-high-speed VCSELs. IEEE Semiconductor Laser Conference, 2016: 1[16] Li H, Lott J A, Wolf P, et al. Temperature-dependent impedance characteristics of temperature-stable high-speed 980-nm VCSELs. IEEE Photon Technol Lett, 2015, 27(8): 832 doi: 10.1109/LPT.2015.2393863[17] Li H, Wolf P, Moser P, et al. Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85 °C with 139-fJ/bit dissipated heat. IEEE Photon Technol Lett, 2014, 26(23): 2349 doi: 10.1109/LPT.2014.2354736[18] Coldren L, Corzine S. Diode lasers and photonic integrated circuits. New York: Wiley, 1995. -
Proportional views