SEMICONDUCTOR DEVICES

Impact of damping on high speed 850 nm VCSEL performance

Shuai Hu1, 2, Xiaoying He1, , Yan He1, 2, Jiale Su2, Chong Li2, Anqi Hu1 and Xia Guo1,

+ Author Affiliations

 Corresponding author: Xiaoying He, xiaoyinghe@bupt.edu.cn; Xia Guo, Email: guox@bupt.edu.cn

PDF

Turn off MathJax

Abstract: High speed VCSELs are important optical devices in short-reach optical communication links and interconnects because of their low cost and high modulation speeds. In this paper, the impact of damping on the their static and dynamic characteristics is analyzed and demonstrated. Through the shallow corrosion of the top layer DBR, the VCSELs with different damping is designed and fabricated. With the increase of the surface etch depth from 0 to ~55 nm for 9 μm oxide-aperture VCSEL, the K factor related with the damping is reduced from 0.31 to 0.23 ns−1. When the etch depth of the VCSEL with 9 μm oxide-aperture is decreased to ~25 nm, output power is increased from 4.03 to 4.70 mW and small signal modulation bandwidth is also increased from 15.46 to 16.37 GHz. It shows that there is a tradeoff between damping and differential gain for improving modulation speed.

Key words: VCSELsK factordamping



[1]
Kuchta D M, Rylyakov A V, Doany F E, et al. 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link. IEEE Photon Technol Lett, 2015, 27(6): 577 doi: 10.1109/LPT.2014.2385671
[2]
Haglund E P, Westbergh P, Gustavsson J S, et al. Impact of damping on high-speed large signal VCSEL dynamics. J Lightwave Technol, 2015, 33(4): 795 doi: 10.1109/JLT.2014.2364455
[3]
Bamiedakis N, Chen J, Penty R V, et al. Bandwidth studies on multimode polymer waveguides for ≥ 25 Gb/s optical interconnects. IEEE Photon Technol Lett, 2014, 26(20): 2004 doi: 10.1109/LPT.2014.2342881
[4]
Jang J P. Semiconductor laser. Beijing: Publishing House of Electronic Industry, 2000
[5]
Goyal P, Gupta S, Kaur G. Advances and improvements in VCSEL designing. Electrical, Electronics, and Optimization Techniques (ICEEOT), International Conference on IEEE, 2016: 4240
[6]
Westbergh P, Gustavsson J S, Kögel B, et al. Impact of photon lifetime on high-speed VCSEL performance. IEEE J Sel Top Quantum Electron, 2011, 17(6): 1603 doi: 10.1109/JSTQE.2011.2114642
[7]
Michalzik R, ed. VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers. Springer-Verlag Berlin Heidelberg, 2012
[8]
Haglund E P, Westbergh P, Gustavsson J S, et al. High-speed VCSELs with strong confinement of optical fields and carriers. J Lightwave Technol, 2016, 34(2): 269 doi: 10.1109/JLT.2015.2458935
[9]
Larisch G, Moser P, Lott A J, et al. Impact of photon lifetime on maximum bitrate and temperature stability of 980 nm VCSELs for 50 Gb/s optical interconnects. IEEE Photonics Conference, 2016: 335
[10]
Wang J, Savidis I, Friedman G E. Thermal analysis of oxide-confined VCSEL arrays. Microelectron J, 2011, 42(5): 820 doi: 10.1016/j.mejo.2010.11.005
[11]
Schubert E F, Tu L W, Zydzik G J, et al. Elimination of heterojunction band discontinuities by modulation doping. Appl Phys Lett, 1992, 60(4): 466 doi: 10.1063/1.106636
[12]
Hadley G R. Effective index model for vertical-cavity surface-emitting lasers. Opt Lett, 1995, 20(13): 1483 doi: 10.1364/OL.20.001483
[13]
Yang G M, Macdougal M H, Pudikov V, et al. Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers. IEEE Photon Technol Lett, 1995, 7(11): 1228 doi: 10.1109/68.473454
[14]
Dong J, He X Y, Hu S, et al. Impact of wet etching and dry etching processes on high speed 850 nm vertical cavity surface emitting lasers. Semicond Optoelectron, 2017, 38(6): 826
[15]
Hamad W, Wanckel S, Hofmann W. Small-signal analysis of ultra-high-speed VCSELs. IEEE Semiconductor Laser Conference, 2016: 1
[16]
Li H, Lott J A, Wolf P, et al. Temperature-dependent impedance characteristics of temperature-stable high-speed 980-nm VCSELs. IEEE Photon Technol Lett, 2015, 27(8): 832 doi: 10.1109/LPT.2015.2393863
[17]
Li H, Wolf P, Moser P, et al. Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85 °C with 139-fJ/bit dissipated heat. IEEE Photon Technol Lett, 2014, 26(23): 2349 doi: 10.1109/LPT.2014.2354736
[18]
Coldren L, Corzine S. Diode lasers and photonic integrated circuits. New York: Wiley, 1995.
Fig. 1.  (Color online) (a) Schematic, cross-sectional view of the high speed VCSEL. (b) Microscope image of fully processed VCSEL on wafer.

Fig. 2.  Calculated top DBR reflectivity as a function of etch depth into the top DBR.

Fig. 3.  (Color online) Output power versus current for the 9 μm oxide-aperture VCSELs with different etch depth. Inset: close-up of the threshold region.

Fig. 4.  (Color online) Small signal modulation bandwidth of the 9 μm oxide-aperture VCSEL with different etch depths at room temperature.

Fig. 5.  (Color online) (a) Damping rate versus resonance frequency squared. (b) K-factor values for 9 μm oxide-aperture VCSELs with different etch depth. (c) Resonance frequency versus square root of bias current density above the threshold for the 9-μm oxide aperture VCSELs with different etch depths. Fits for extracting the D-factor are indicated. (d) Differential gain versus etch depth for the 9-μm aperture VCSEL calculated from the D-factor.

[1]
Kuchta D M, Rylyakov A V, Doany F E, et al. 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link. IEEE Photon Technol Lett, 2015, 27(6): 577 doi: 10.1109/LPT.2014.2385671
[2]
Haglund E P, Westbergh P, Gustavsson J S, et al. Impact of damping on high-speed large signal VCSEL dynamics. J Lightwave Technol, 2015, 33(4): 795 doi: 10.1109/JLT.2014.2364455
[3]
Bamiedakis N, Chen J, Penty R V, et al. Bandwidth studies on multimode polymer waveguides for ≥ 25 Gb/s optical interconnects. IEEE Photon Technol Lett, 2014, 26(20): 2004 doi: 10.1109/LPT.2014.2342881
[4]
Jang J P. Semiconductor laser. Beijing: Publishing House of Electronic Industry, 2000
[5]
Goyal P, Gupta S, Kaur G. Advances and improvements in VCSEL designing. Electrical, Electronics, and Optimization Techniques (ICEEOT), International Conference on IEEE, 2016: 4240
[6]
Westbergh P, Gustavsson J S, Kögel B, et al. Impact of photon lifetime on high-speed VCSEL performance. IEEE J Sel Top Quantum Electron, 2011, 17(6): 1603 doi: 10.1109/JSTQE.2011.2114642
[7]
Michalzik R, ed. VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers. Springer-Verlag Berlin Heidelberg, 2012
[8]
Haglund E P, Westbergh P, Gustavsson J S, et al. High-speed VCSELs with strong confinement of optical fields and carriers. J Lightwave Technol, 2016, 34(2): 269 doi: 10.1109/JLT.2015.2458935
[9]
Larisch G, Moser P, Lott A J, et al. Impact of photon lifetime on maximum bitrate and temperature stability of 980 nm VCSELs for 50 Gb/s optical interconnects. IEEE Photonics Conference, 2016: 335
[10]
Wang J, Savidis I, Friedman G E. Thermal analysis of oxide-confined VCSEL arrays. Microelectron J, 2011, 42(5): 820 doi: 10.1016/j.mejo.2010.11.005
[11]
Schubert E F, Tu L W, Zydzik G J, et al. Elimination of heterojunction band discontinuities by modulation doping. Appl Phys Lett, 1992, 60(4): 466 doi: 10.1063/1.106636
[12]
Hadley G R. Effective index model for vertical-cavity surface-emitting lasers. Opt Lett, 1995, 20(13): 1483 doi: 10.1364/OL.20.001483
[13]
Yang G M, Macdougal M H, Pudikov V, et al. Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers. IEEE Photon Technol Lett, 1995, 7(11): 1228 doi: 10.1109/68.473454
[14]
Dong J, He X Y, Hu S, et al. Impact of wet etching and dry etching processes on high speed 850 nm vertical cavity surface emitting lasers. Semicond Optoelectron, 2017, 38(6): 826
[15]
Hamad W, Wanckel S, Hofmann W. Small-signal analysis of ultra-high-speed VCSELs. IEEE Semiconductor Laser Conference, 2016: 1
[16]
Li H, Lott J A, Wolf P, et al. Temperature-dependent impedance characteristics of temperature-stable high-speed 980-nm VCSELs. IEEE Photon Technol Lett, 2015, 27(8): 832 doi: 10.1109/LPT.2015.2393863
[17]
Li H, Wolf P, Moser P, et al. Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85 °C with 139-fJ/bit dissipated heat. IEEE Photon Technol Lett, 2014, 26(23): 2349 doi: 10.1109/LPT.2014.2354736
[18]
Coldren L, Corzine S. Diode lasers and photonic integrated circuits. New York: Wiley, 1995.
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4890 Times PDF downloads: 117 Times Cited by: 0 Times

    History

    Received: 16 March 2018 Revised: 08 April 2018 Online: Uncorrected proof: 31 May 2018Accepted Manuscript: 17 September 2018Published: 01 November 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shuai Hu, Xiaoying He, Yan He, Jiale Su, Chong Li, Anqi Hu, Xia Guo. Impact of damping on high speed 850 nm VCSEL performance[J]. Journal of Semiconductors, 2018, 39(11): 114006. doi: 10.1088/1674-4926/39/11/114006 ****S Hu, X Y He, Y He, J L Su, C Li, A Q Hu, X Guo, Impact of damping on high speed 850 nm VCSEL performance[J]. J. Semicond., 2018, 39(11): 114006. doi: 10.1088/1674-4926/39/11/114006.
      Citation:
      Shuai Hu, Xiaoying He, Yan He, Jiale Su, Chong Li, Anqi Hu, Xia Guo. Impact of damping on high speed 850 nm VCSEL performance[J]. Journal of Semiconductors, 2018, 39(11): 114006. doi: 10.1088/1674-4926/39/11/114006 ****
      S Hu, X Y He, Y He, J L Su, C Li, A Q Hu, X Guo, Impact of damping on high speed 850 nm VCSEL performance[J]. J. Semicond., 2018, 39(11): 114006. doi: 10.1088/1674-4926/39/11/114006.

      Impact of damping on high speed 850 nm VCSEL performance

      doi: 10.1088/1674-4926/39/11/114006
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 61335004, 61675046, 61505003), the Open Fund of IPOC2017B011 (BUPT).

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return