Citation: |
Jie Huang, Yurun Sun, Yongming Zhao, Shuzhen Yu, Jianrong Dong, Jiping Xue, Chi Xue, Jin Wang, Yunqing Lu, Yanwen Ding. Four-junction AlGaAs/GaAs laser power converter[J]. Journal of Semiconductors, 2018, 39(4): 044003. doi: 10.1088/1674-4926/39/4/044003
****
J Huang, Y R Sun, Y M Zhao, S Z Yu, J R Dong, J P Xue, C Xue, J Wang, Y Q Lu, Y W Ding. Four-junction AlGaAs/GaAs laser power converter[J]. J. Semicond., 2018, 39(4): 044003. doi: 10.1088/1674-4926/39/4/044003.
|
-
Abstract
Four-junction AlGaAs/GaAs laser power converters (LPCs) with n+-GaAs/p+-Al0.37Ga0.63As heterostructure tunnel junctions (TJs) have been designed and grown by metal-organic chemical vapor deposition (MOCVD) for converting the power of 808 nm lasers. A maximum conversion efficiency ηc of 56.9% ± 4% is obtained for cells with an aperture of 3.14 mm2 at an input laser power of 0.2 W, while dropping to 43.3% at 1.5 W. Measured current–voltage (I–V) characteristics indicate that the performance of the LPC can be further improved by increasing the tunneling current density of TJs and optimizing the thicknesses of sub-cells to achieve current matching in LPC. -
References
[1] Park S, Borton D A, Kang M, et al. An implantable neural sensing microsystem with fiber-optic data transmission and power delivery. Sensors, 2013, 13(5): 6014 doi: 10.3390/s130506014[2] Fafard S, Proulx F, York M C A, et al. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%. Appl Phys Lett, 2016, 109: 131107 doi: 10.1063/1.4964120[3] Singh N, Ho C K F, Leong Y N, et al. InAlGaAs/InP-based laser photovoltaic converter at ~1070 nm. IEEE Electron Device Lett, 2016, 37(9): 1154 doi: 10.1109/LED.2016.2591015[4] Schubert J, Oliva E, Dimroth F, et al. High-voltage GaAs photovoltaic laser power converters. IEEE Trans Electron Devices, 2009, 56: 170 doi: 10.1109/TED.2008.2010603[5] Shan T Q, Qi X L. Design and optimization of GaAs photovoltaic converter for laser power beaming. Infrared Phys Technol, 2015, 71: 144 doi: 10.1016/j.infrared.2015.03.010[6] Emelyanov V M, Mintairov S A, Sorokina S V, et al. Simulation of the Ohmic loss in photovoltaic laser-power converters for wavelengths of 809 nm and 1064 nm. Semiconductors, 2016, 50(1): 125 doi: 10.1134/S1063782616010085[7] Oliva E, Dimroth F, Bett A W. GaAs converters for high power densities of laser illumination. Prog Photovolt: Res Appl, 2008, 16: 289 doi: 10.1002/pip.v16:4[8] Khvostikov V P, Kalyuzhnyy N A, Mintairov S A, et al. Photovoltaic laser-power converter based on AlGaAs/GaAs heterostructures. Semiconductors, 2016, 50(9): 1220 doi: 10.1134/S1063782616090128[9] Masson D, Proulx F, Fafard S. Pushing the limits of concentrated photovoltaic solar cell tunnel junctions in novel high-efficiency GaAs phototransducers based on a vertical epitaxial heterostructure architecture. Prog Photovolt: Res Appl, 2015, 23(12): 1687 doi: 10.1002/pip.2709[10] Fave A, Kaminski A, Gavand M, et al. GaAs converter for high power laser diode. 25th IEEE Photovoltaic Specialists Conference (Washington, USA), 1996: 101[11] Olsen L C, Huber D A, Dunham G, et al. High efficiency monochromatic GaAs solar cells. 22th IEEE Photovoltaic Specialists Conference (Las Vegas, USA), 1991: 419[12] Singh P, Ravindra N M. Temperature dependence of solar cell performance—an analysis. Sol Energy Mater Sol Cells, 2012, 101(1): 36 doi: 10.1016/j.solmat.2012.02.019[13] Zhang H, Chen N F, Wang Y, et al. Design and optimization of a monolithic GaInP/GaInAs tandem solar cell. J Semicond, 2010, 31(8): 084009 doi: 10.1088/1674-4926/31/8/084009[14] Sun Y R, Dong J R, He Y, et al. A six-junction GaAs laser power converter with different sizes of active aperture. Optoelectron Lett, 2017, 13(1): 0021 doi: 10.1007/s11801-016-6193-8[15] Jung D, Parker C A, Ramdani J, et al. AlGaAs/GaInP heterojunction tunnel diode for cascade solar cell application. J Appl Phys, 1993, 74: 2090 doi: 10.1063/1.354753[16] Sharma P, Walker A W, Wheeldon J F, et al. Enhanced efficiencies for high-concentration, multijunction PV systems by optimizing grid spacing under nonuniform illumination. Int J Photoenergy, 2014, 2014: 582083 doi: 10.1155/2014/582083[17] Samberg J P, Carlin C Z, Bradshaw G K, et al. Effect of GaAs interfacial layer on the performance of high bandgap tunnel junction for multijunction solar cells. Appl Phys Lett, 2013, 103: 103503 doi: 10.1063/1.4819917[18] Katz E A, Gordon J M, Tassew W, et al. Photovoltaic characterization of convertor solar cells by localized irradiation. J Appl Phys, 2006, 100: 044514 doi: 10.1063/1.2266161[19] Zhao Y M, Sun Y R, He Y, et al. Design and fabrication of six-volt vertically-stacked GaAs photovoltaic power converter. Sci Rep, 2016, 6: 38044 doi: 10.1038/srep38044[20] Hirst L C, akes M K, Warner J H, et al. Intrinsic radiation tolerance of ultra-thin GaAs solar cells. Appl Phys Lett, 2016, 109: 033908 doi: 10.1063/1.4959784 -
Proportional views