SEMICONDUCTOR DEVICES

Four-junction AlGaAs/GaAs laser power converter

Jie Huang1, 2, Yurun Sun1, Yongming Zhao1, 2, Shuzhen Yu1, Jianrong Dong1, , Jiping Xue3, Chi Xue3, Jin Wang4, Yunqing Lu4 and Yanwen Ding4

+ Author Affiliations

 Corresponding author: Jianrong Dong, E-mail: jrdong2007@sinano.ac.cn

PDF

Turn off MathJax

Abstract: Four-junction AlGaAs/GaAs laser power converters (LPCs) with n+-GaAs/p+-Al0.37Ga0.63As heterostructure tunnel junctions (TJs) have been designed and grown by metal-organic chemical vapor deposition (MOCVD) for converting the power of 808 nm lasers. A maximum conversion efficiency ηc of 56.9% ± 4% is obtained for cells with an aperture of 3.14 mm2 at an input laser power of 0.2 W, while dropping to 43.3% at 1.5 W. Measured current–voltage (IV) characteristics indicate that the performance of the LPC can be further improved by increasing the tunneling current density of TJs and optimizing the thicknesses of sub-cells to achieve current matching in LPC.

Key words: laser power converters (LPCs)metal-organic chemical vapor deposition (MOCVD)GaAs



[1]
Park S, Borton D A, Kang M, et al. An implantable neural sensing microsystem with fiber-optic data transmission and power delivery. Sensors, 2013, 13(5): 6014 doi: 10.3390/s130506014
[2]
Fafard S, Proulx F, York M C A, et al. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%. Appl Phys Lett, 2016, 109: 131107 doi: 10.1063/1.4964120
[3]
Singh N, Ho C K F, Leong Y N, et al. InAlGaAs/InP-based laser photovoltaic converter at ~1070 nm. IEEE Electron Device Lett, 2016, 37(9): 1154 doi: 10.1109/LED.2016.2591015
[4]
Schubert J, Oliva E, Dimroth F, et al. High-voltage GaAs photovoltaic laser power converters. IEEE Trans Electron Devices, 2009, 56: 170 doi: 10.1109/TED.2008.2010603
[5]
Shan T Q, Qi X L. Design and optimization of GaAs photovoltaic converter for laser power beaming. Infrared Phys Technol, 2015, 71: 144 doi: 10.1016/j.infrared.2015.03.010
[6]
Emelyanov V M, Mintairov S A, Sorokina S V, et al. Simulation of the Ohmic loss in photovoltaic laser-power converters for wavelengths of 809 nm and 1064 nm. Semiconductors, 2016, 50(1): 125 doi: 10.1134/S1063782616010085
[7]
Oliva E, Dimroth F, Bett A W. GaAs converters for high power densities of laser illumination. Prog Photovolt: Res Appl, 2008, 16: 289 doi: 10.1002/pip.v16:4
[8]
Khvostikov V P, Kalyuzhnyy N A, Mintairov S A, et al. Photovoltaic laser-power converter based on AlGaAs/GaAs heterostructures. Semiconductors, 2016, 50(9): 1220 doi: 10.1134/S1063782616090128
[9]
Masson D, Proulx F, Fafard S. Pushing the limits of concentrated photovoltaic solar cell tunnel junctions in novel high-efficiency GaAs phototransducers based on a vertical epitaxial heterostructure architecture. Prog Photovolt: Res Appl, 2015, 23(12): 1687 doi: 10.1002/pip.2709
[10]
Fave A, Kaminski A, Gavand M, et al. GaAs converter for high power laser diode. 25th IEEE Photovoltaic Specialists Conference (Washington, USA), 1996: 101
[11]
Olsen L C, Huber D A, Dunham G, et al. High efficiency monochromatic GaAs solar cells. 22th IEEE Photovoltaic Specialists Conference (Las Vegas, USA), 1991: 419
[12]
Singh P, Ravindra N M. Temperature dependence of solar cell performance—an analysis. Sol Energy Mater Sol Cells, 2012, 101(1): 36 doi: 10.1016/j.solmat.2012.02.019
[13]
Zhang H, Chen N F, Wang Y, et al. Design and optimization of a monolithic GaInP/GaInAs tandem solar cell. J Semicond, 2010, 31(8): 084009 doi: 10.1088/1674-4926/31/8/084009
[14]
Sun Y R, Dong J R, He Y, et al. A six-junction GaAs laser power converter with different sizes of active aperture. Optoelectron Lett, 2017, 13(1): 0021 doi: 10.1007/s11801-016-6193-8
[15]
Jung D, Parker C A, Ramdani J, et al. AlGaAs/GaInP heterojunction tunnel diode for cascade solar cell application. J Appl Phys, 1993, 74: 2090 doi: 10.1063/1.354753
[16]
Sharma P, Walker A W, Wheeldon J F, et al. Enhanced efficiencies for high-concentration, multijunction PV systems by optimizing grid spacing under nonuniform illumination. Int J Photoenergy, 2014, 2014: 582083 doi: 10.1155/2014/582083
[17]
Samberg J P, Carlin C Z, Bradshaw G K, et al. Effect of GaAs interfacial layer on the performance of high bandgap tunnel junction for multijunction solar cells. Appl Phys Lett, 2013, 103: 103503 doi: 10.1063/1.4819917
[18]
Katz E A, Gordon J M, Tassew W, et al. Photovoltaic characterization of convertor solar cells by localized irradiation. J Appl Phys, 2006, 100: 044514 doi: 10.1063/1.2266161
[19]
Zhao Y M, Sun Y R, He Y, et al. Design and fabrication of six-volt vertically-stacked GaAs photovoltaic power converter. Sci Rep, 2016, 6: 38044 doi: 10.1038/srep38044
[20]
Hirst L C, akes M K, Warner J H, et al. Intrinsic radiation tolerance of ultra-thin GaAs solar cells. Appl Phys Lett, 2016, 109: 033908 doi: 10.1063/1.4959784
Fig. 1.  Schematic structure of an LPC.

Fig. 2.  (a) Calculated JV curves of each sub-cell under 10 W/cm2 of intensity, and (b) Voc of sub-cells at varying illumination intensities.

Fig. 3.  Calculated (a) Voc and Jsc, and (b) ηc as function of input power density.

Fig. 4.  (Color online) (a) IV characteristics, (b) output power of an LPC, and (c) FF and ηc as a function of input laser power. The inset shows a microscopic image of an LPC.

Fig. 5.  Measured Voc of an LPC as a function of lg Pin. The inset shows calculated and measured Jsc at different input laser power densities.

Table 1.   The reverse saturation current density (J0), ideality factor (n), shadowing factor, IQE, reflectance of surface and FF used for estimation.

J0 (A/cm2) n Shadowing factor IQE Reflectance FF
6 × 10–20 4 0.06 0.998 0.002 0.855
DownLoad: CSV
[1]
Park S, Borton D A, Kang M, et al. An implantable neural sensing microsystem with fiber-optic data transmission and power delivery. Sensors, 2013, 13(5): 6014 doi: 10.3390/s130506014
[2]
Fafard S, Proulx F, York M C A, et al. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%. Appl Phys Lett, 2016, 109: 131107 doi: 10.1063/1.4964120
[3]
Singh N, Ho C K F, Leong Y N, et al. InAlGaAs/InP-based laser photovoltaic converter at ~1070 nm. IEEE Electron Device Lett, 2016, 37(9): 1154 doi: 10.1109/LED.2016.2591015
[4]
Schubert J, Oliva E, Dimroth F, et al. High-voltage GaAs photovoltaic laser power converters. IEEE Trans Electron Devices, 2009, 56: 170 doi: 10.1109/TED.2008.2010603
[5]
Shan T Q, Qi X L. Design and optimization of GaAs photovoltaic converter for laser power beaming. Infrared Phys Technol, 2015, 71: 144 doi: 10.1016/j.infrared.2015.03.010
[6]
Emelyanov V M, Mintairov S A, Sorokina S V, et al. Simulation of the Ohmic loss in photovoltaic laser-power converters for wavelengths of 809 nm and 1064 nm. Semiconductors, 2016, 50(1): 125 doi: 10.1134/S1063782616010085
[7]
Oliva E, Dimroth F, Bett A W. GaAs converters for high power densities of laser illumination. Prog Photovolt: Res Appl, 2008, 16: 289 doi: 10.1002/pip.v16:4
[8]
Khvostikov V P, Kalyuzhnyy N A, Mintairov S A, et al. Photovoltaic laser-power converter based on AlGaAs/GaAs heterostructures. Semiconductors, 2016, 50(9): 1220 doi: 10.1134/S1063782616090128
[9]
Masson D, Proulx F, Fafard S. Pushing the limits of concentrated photovoltaic solar cell tunnel junctions in novel high-efficiency GaAs phototransducers based on a vertical epitaxial heterostructure architecture. Prog Photovolt: Res Appl, 2015, 23(12): 1687 doi: 10.1002/pip.2709
[10]
Fave A, Kaminski A, Gavand M, et al. GaAs converter for high power laser diode. 25th IEEE Photovoltaic Specialists Conference (Washington, USA), 1996: 101
[11]
Olsen L C, Huber D A, Dunham G, et al. High efficiency monochromatic GaAs solar cells. 22th IEEE Photovoltaic Specialists Conference (Las Vegas, USA), 1991: 419
[12]
Singh P, Ravindra N M. Temperature dependence of solar cell performance—an analysis. Sol Energy Mater Sol Cells, 2012, 101(1): 36 doi: 10.1016/j.solmat.2012.02.019
[13]
Zhang H, Chen N F, Wang Y, et al. Design and optimization of a monolithic GaInP/GaInAs tandem solar cell. J Semicond, 2010, 31(8): 084009 doi: 10.1088/1674-4926/31/8/084009
[14]
Sun Y R, Dong J R, He Y, et al. A six-junction GaAs laser power converter with different sizes of active aperture. Optoelectron Lett, 2017, 13(1): 0021 doi: 10.1007/s11801-016-6193-8
[15]
Jung D, Parker C A, Ramdani J, et al. AlGaAs/GaInP heterojunction tunnel diode for cascade solar cell application. J Appl Phys, 1993, 74: 2090 doi: 10.1063/1.354753
[16]
Sharma P, Walker A W, Wheeldon J F, et al. Enhanced efficiencies for high-concentration, multijunction PV systems by optimizing grid spacing under nonuniform illumination. Int J Photoenergy, 2014, 2014: 582083 doi: 10.1155/2014/582083
[17]
Samberg J P, Carlin C Z, Bradshaw G K, et al. Effect of GaAs interfacial layer on the performance of high bandgap tunnel junction for multijunction solar cells. Appl Phys Lett, 2013, 103: 103503 doi: 10.1063/1.4819917
[18]
Katz E A, Gordon J M, Tassew W, et al. Photovoltaic characterization of convertor solar cells by localized irradiation. J Appl Phys, 2006, 100: 044514 doi: 10.1063/1.2266161
[19]
Zhao Y M, Sun Y R, He Y, et al. Design and fabrication of six-volt vertically-stacked GaAs photovoltaic power converter. Sci Rep, 2016, 6: 38044 doi: 10.1038/srep38044
[20]
Hirst L C, akes M K, Warner J H, et al. Intrinsic radiation tolerance of ultra-thin GaAs solar cells. Appl Phys Lett, 2016, 109: 033908 doi: 10.1063/1.4959784
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4238 Times PDF downloads: 79 Times Cited by: 0 Times

    History

    Received: 10 August 2017 Revised: 30 September 2017 Online: Uncorrected proof: 24 January 2018Accepted Manuscript: 01 March 2018Published: 01 April 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jie Huang, Yurun Sun, Yongming Zhao, Shuzhen Yu, Jianrong Dong, Jiping Xue, Chi Xue, Jin Wang, Yunqing Lu, Yanwen Ding. Four-junction AlGaAs/GaAs laser power converter[J]. Journal of Semiconductors, 2018, 39(4): 044003. doi: 10.1088/1674-4926/39/4/044003 ****J Huang, Y R Sun, Y M Zhao, S Z Yu, J R Dong, J P Xue, C Xue, J Wang, Y Q Lu, Y W Ding. Four-junction AlGaAs/GaAs laser power converter[J]. J. Semicond., 2018, 39(4): 044003. doi: 10.1088/1674-4926/39/4/044003.
      Citation:
      Jie Huang, Yurun Sun, Yongming Zhao, Shuzhen Yu, Jianrong Dong, Jiping Xue, Chi Xue, Jin Wang, Yunqing Lu, Yanwen Ding. Four-junction AlGaAs/GaAs laser power converter[J]. Journal of Semiconductors, 2018, 39(4): 044003. doi: 10.1088/1674-4926/39/4/044003 ****
      J Huang, Y R Sun, Y M Zhao, S Z Yu, J R Dong, J P Xue, C Xue, J Wang, Y Q Lu, Y W Ding. Four-junction AlGaAs/GaAs laser power converter[J]. J. Semicond., 2018, 39(4): 044003. doi: 10.1088/1674-4926/39/4/044003.

      Four-junction AlGaAs/GaAs laser power converter

      doi: 10.1088/1674-4926/39/4/044003
      Funds:

      Project financially supported by the National Natural Science Foundation of China (No. 61376065) and Zhongtian Technology Group Co. Ltd.

      More Information
      • Corresponding author: E-mail: jrdong2007@sinano.ac.cn
      • Received Date: 2017-08-10
      • Revised Date: 2017-09-30
      • Published Date: 2018-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return