SEMICONDUCTOR INTEGRATED CIRCUITS

A broadband high-efficiency Doherty power amplifier using symmetrical devices

Zhiqun Cheng, Ming Zhang, Jiangzhou Li and Guohua Liu

+ Author Affiliations

 Corresponding author: Zhiqun Cheng, Email: zhiqun@hdu.edu.cn; Guohua Liu, ghliu@hdu.edu.cn

PDF

Turn off MathJax

Abstract: This paper proposes a method for broadband and high-efficiency amplification of Doherty power amplifier (DPA) using symmetric devices. In order to achieve the perfect load modulation, the carrier amplifier output circuit total power length is designed to odd multiple of 90°, and the peak amplifier output total power length is designed to even multiple of 180°. The proposed method is demonstrated by designing a broadband high-efficiency DPA using identical 10-W packaged GaN HEMT devices. Measurement results show that over 51% drain efficiency is achieved at 6-dB back-off power, over the frequency band of 1.9–2.4 GHz.

Key words: Doherty power amplifierbroadbandhigh efficiencysymmetric devices



[1]
Son J, Kim I, Moon J, et al. A highly efficient asymmetric Doherty power amplifier with a new output combining circuit. IEEE Int Microw, Commun, Antennas, Electron Syst Conf, 2011: 1
[2]
Chen S, Wang G, Cheng Z, et al. A bandwdith enhanced Doherty power amplifer with a compact output combiner. IEEE Microw Wireless Compon Lett, 2016, 26(6): 434 doi: 10.1109/LMWC.2016.2558108
[3]
Gustafsson D, Andersson C, Fager C. A modified Doherty power amplifier with extended bandwidth and reconfigurable efficiency. IEEE Trans Microw Theory Tech, 2013, 61(1): 533 doi: 10.1109/TMTT.2012.2227783
[4]
Abadi M N A, Golestaneh H, Sarbishaei H, et al. An extended bandwidth Doherty power amplifier using a novel output combiner. IEEE MTT-S Int Dig, Tampa, FL, USA, 2014: 1
[5]
Rubio J M, Fang J, Camarchia V, et al. 3–3.6-GHz wideband GaN Doherty power amplifier exploiting output compensation stages. IEEE Trans Microw Theory Tech, 2012, 60(8): 2543 doi: 10.1109/TMTT.2012.2201745
[6]
Akbarpour M, Helaoui M, Ghannouchi F M. A transformer-less load-modulated (TLLM) architecture for efficient wideband power amplifiers. IEEE Trans Microw Theory Tech, 2012, 60(9): 2863 doi: 10.1109/TMTT.2012.2206050
[7]
Piazzon L, Giofrè R, Colantonio P, et al. A wideband Doherty architecture with 36% of fractional bandwidth. IEEE Microw Wireless Compon Lett, 2013, 23(11): 626 doi: 10.1109/LMWC.2013.2281413
[8]
Yang M, Xia J, Zhu A. A 1.8-2.3 GHz broadband Doherty power amplifier with a minimized impedance transformation ratio. Asia-Pacific Microwave Conference, 2015: 1
[9]
Jee S, Lee J, Son J, et al. Asymmetric broadband Doherty power amplifier using GaN MMIC for femto-cell base-station. IEEE Trans Microw Theory Tech, 2015, 63(9): 2802 doi: 10.1109/TMTT.2015.2442973
[10]
Chen S, Cheng Z, Wang G, et al. Compact Doherty power amplifier design for 2 × 2 multiple-input multiple-output system. IEEE Microw Wireless Compon Lett, 2016, 26(3): 216 doi: 10.1109/LMWC.2016.2526024
[11]
Giofre R, Piazzon L, Colantonio P, et al. A closed-form design technique for ultra wideband Doherty power amplifiers. IEEE Trans Microw Theory Tech, 2014, 62(12): 3414 doi: 10.1109/TMTT.2014.2363851
[12]
Park Y, Lee J, Jee S, et al. Gate bias adaptation of Doherty power amplifier for high efficiency and high power. IEEE Microw Wireless Compon Lett, 2015, 25(2): 136 doi: 10.1109/LMWC.2014.2373637
[13]
Sun G, Jansen R. Broadband Doherty power amplifier via real frequency technique. IEEE Trans Microw Theory Tech, 2012, 60(1): 99 doi: 10.1109/TMTT.2011.2175237
[14]
Özen M, Andersson K, Fager C. Symmetrical Doherty power amplifier with extended efficiency range. IEEE Trans Microw Theory Tech, 2016, 64(4): 1273 doi: 10.1109/TMTT.2016.2529601
[15]
Tasker P J, Benedikt J. Waveform inspired models and theharmonic balance emulator. IEEE Microw Mag, 2011, 12(2): 38 doi: 10.1109/MMM.2010.940101
Fig. 1.  Simplified schematic diagrams for the conventional DPA.

Fig. 2.  Simplified schematic diagrams for the proposed DPA.

Fig. 3.  (Color online) A commercial large-signal model of Cree CGH40010F.

Fig. 4.  (Color online) Complete schematic of the proposed DPA.

Fig. 5.  (Color online) Photograph of the fabricated circuit.

Fig. 6.  (Color online) Measured and simulated S parameter of the proposed DPA versus frequency.

Fig. 7.  (Color online) Measured and simulated peak powers, gains and drain efficiencies versus frequency at saturation power.

Fig. 8.  (Color online) Measured and simulated gains and drain efficiencies versus frequency at 6-dB back-off power.

Fig. 9.  (Color online) Measured drain efficiency profiles versus output power.

Fig. 10.  (Color online) Measured ACPR for 5-MHz WCDMA modulated signal at 2 GHz.

Table 1.   Doherty power amplifiers performance comparison.

Parameter Frequency (GHz) Bandwidth (%) DE @ saturation (%) DE @ 6 dB back-off (%) Pout (dBm)
Ref. [2] 1.5−2.5 50 55−75 > 42 42−44.5
Ref. [3] 1.5−2.4 46.2 49−68 > 43 ≥ 42
Ref. [4] 0.7−0.95 30 53−67 > 48 ≥ 43
Ref. [5] 3−3.6 18.2 55−66 > 38 43−44
Ref. [6] 1.96−2.46 23 50−60 > 40 39.5−41.7
Ref. [7] 1.67−2.41 36.3 53−72 > 43 39−42
Ref. [8] 1.8−2.3 24.4 63−74 > 50 34
This work 1.9−2.4 23.3 63−71 > 51 44.2−45
DownLoad: CSV
[1]
Son J, Kim I, Moon J, et al. A highly efficient asymmetric Doherty power amplifier with a new output combining circuit. IEEE Int Microw, Commun, Antennas, Electron Syst Conf, 2011: 1
[2]
Chen S, Wang G, Cheng Z, et al. A bandwdith enhanced Doherty power amplifer with a compact output combiner. IEEE Microw Wireless Compon Lett, 2016, 26(6): 434 doi: 10.1109/LMWC.2016.2558108
[3]
Gustafsson D, Andersson C, Fager C. A modified Doherty power amplifier with extended bandwidth and reconfigurable efficiency. IEEE Trans Microw Theory Tech, 2013, 61(1): 533 doi: 10.1109/TMTT.2012.2227783
[4]
Abadi M N A, Golestaneh H, Sarbishaei H, et al. An extended bandwidth Doherty power amplifier using a novel output combiner. IEEE MTT-S Int Dig, Tampa, FL, USA, 2014: 1
[5]
Rubio J M, Fang J, Camarchia V, et al. 3–3.6-GHz wideband GaN Doherty power amplifier exploiting output compensation stages. IEEE Trans Microw Theory Tech, 2012, 60(8): 2543 doi: 10.1109/TMTT.2012.2201745
[6]
Akbarpour M, Helaoui M, Ghannouchi F M. A transformer-less load-modulated (TLLM) architecture for efficient wideband power amplifiers. IEEE Trans Microw Theory Tech, 2012, 60(9): 2863 doi: 10.1109/TMTT.2012.2206050
[7]
Piazzon L, Giofrè R, Colantonio P, et al. A wideband Doherty architecture with 36% of fractional bandwidth. IEEE Microw Wireless Compon Lett, 2013, 23(11): 626 doi: 10.1109/LMWC.2013.2281413
[8]
Yang M, Xia J, Zhu A. A 1.8-2.3 GHz broadband Doherty power amplifier with a minimized impedance transformation ratio. Asia-Pacific Microwave Conference, 2015: 1
[9]
Jee S, Lee J, Son J, et al. Asymmetric broadband Doherty power amplifier using GaN MMIC for femto-cell base-station. IEEE Trans Microw Theory Tech, 2015, 63(9): 2802 doi: 10.1109/TMTT.2015.2442973
[10]
Chen S, Cheng Z, Wang G, et al. Compact Doherty power amplifier design for 2 × 2 multiple-input multiple-output system. IEEE Microw Wireless Compon Lett, 2016, 26(3): 216 doi: 10.1109/LMWC.2016.2526024
[11]
Giofre R, Piazzon L, Colantonio P, et al. A closed-form design technique for ultra wideband Doherty power amplifiers. IEEE Trans Microw Theory Tech, 2014, 62(12): 3414 doi: 10.1109/TMTT.2014.2363851
[12]
Park Y, Lee J, Jee S, et al. Gate bias adaptation of Doherty power amplifier for high efficiency and high power. IEEE Microw Wireless Compon Lett, 2015, 25(2): 136 doi: 10.1109/LMWC.2014.2373637
[13]
Sun G, Jansen R. Broadband Doherty power amplifier via real frequency technique. IEEE Trans Microw Theory Tech, 2012, 60(1): 99 doi: 10.1109/TMTT.2011.2175237
[14]
Özen M, Andersson K, Fager C. Symmetrical Doherty power amplifier with extended efficiency range. IEEE Trans Microw Theory Tech, 2016, 64(4): 1273 doi: 10.1109/TMTT.2016.2529601
[15]
Tasker P J, Benedikt J. Waveform inspired models and theharmonic balance emulator. IEEE Microw Mag, 2011, 12(2): 38 doi: 10.1109/MMM.2010.940101
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5185 Times PDF downloads: 169 Times Cited by: 0 Times

    History

    Received: 05 August 2017 Revised: 09 October 2017 Online: Uncorrected proof: 24 January 2018Accepted Manuscript: 01 March 2018Published: 01 April 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhiqun Cheng, Ming Zhang, Jiangzhou Li, Guohua Liu. A broadband high-efficiency Doherty power amplifier using symmetrical devices[J]. Journal of Semiconductors, 2018, 39(4): 045004. doi: 10.1088/1674-4926/39/4/045004 ****Z Q Cheng, M Zhang, J Z Li, G H Liu. A broadband high-efficiency Doherty power amplifier using symmetrical devices[J]. J. Semicond., 2018, 39(4): 045004. doi: 10.1088/1674-4926/39/4/045004.
      Citation:
      Zhiqun Cheng, Ming Zhang, Jiangzhou Li, Guohua Liu. A broadband high-efficiency Doherty power amplifier using symmetrical devices[J]. Journal of Semiconductors, 2018, 39(4): 045004. doi: 10.1088/1674-4926/39/4/045004 ****
      Z Q Cheng, M Zhang, J Z Li, G H Liu. A broadband high-efficiency Doherty power amplifier using symmetrical devices[J]. J. Semicond., 2018, 39(4): 045004. doi: 10.1088/1674-4926/39/4/045004.

      A broadband high-efficiency Doherty power amplifier using symmetrical devices

      doi: 10.1088/1674-4926/39/4/045004
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 60123456), the Zhejiang Provincial Natural Science Foundation of China (No. LZ16F010001), and the Zhejiang Provincial Public Technology Research Project (No. 2016C31070).

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return