J. Semicond. > 2018, Volume 39 > Issue 6 > 063001

SPECIAL ISSUE ON Si-BASED MATERIALS AND DEVICES

Ammonia sensing using arrays of silicon nanowires and graphene

K. Fobelets1, , C. Panteli1, O. Sydoruk1 and Chuanbo Li2

+ Author Affiliations

 Corresponding author: K. Fobelets, k.fobelets@imperial.ac.uk

DOI: 10.1088/1674-4926/39/6/063001

PDF

Turn off MathJax

Abstract: Ammonia (NH3) is a toxic gas released in different industrial, agricultural and natural processes. It is also a biomarker for some diseases. These require NH3 sensors for health and safety reasons. To boost the sensitivity of solid-state sensors, the effective sensing area should be increased. Two methods are explored and compared using an evaporating pool of 0.5 mL NH4OH (28% NH3). In the first method an array of Si nanowires (Si NWA) is obtained via metal-assisted-electrochemical etching to increase the effective surface area. In the second method CVD graphene is suspended on top of the Si nanowires to act as a sensing layer. Both the effective surface area as well as the density of surface traps influences the amplitude of the response. The effective surface area of Si NWAs is 100 × larger than that of suspended graphene for the same top surface area, leading to a larger response in amplitude by a factor of ~7 notwithstanding a higher trap density in suspended graphene. The use of Si NWAs increases the response rate for both Si NWAs as well as the suspended graphene due to more effective NH3 diffusion processes.

Key words: NH3 sensorsilicon nanowiresresistive sensorlow frequency noisegraphene



[1]
Timmer B, Olthuis W, van den Berg A . Ammonia sensors and their applications—a review. Sens Actuators B, 2005, 107(2): 666 doi: 10.1016/j.snb.2004.11.054
[2]
IRC Ammonia sensor overview. Industrial regfrigeration consortium, Dec. 2 2002. On-line: https://www.irc.wisc.edu/file. php?ID=44
[3]
Brannelly N T, Hamilton-Shield J P, Killard A J. The measurement of ammonia in human breath and its potential in clinical diagnostics. Crit Rev Anal Chem, 2016, 46(6): 490 doi: 10.1080/10408347.2016.1153949
[4]
Lakkis S, Younes R, Alayli Y, et al. Review of recent trends in gas sensing technologies and their miniaturization potential. Sens Rev, 2014, 34(1): 24 doi: 10.1108/SR-11-2012-724
[5]
Neri G. First fifty years of chemoresistive gas sensors. Chemosensors, 2015, 3: 1 doi: 10.3390/chemosensors3010001
[6]
Korotcenkov G, Brinzari V, Cho B K. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Microchim Acta, 2016, 183: 1033 doi: 10.1007/s00604-015-1741-z
[7]
Smulko J M, Trawka M, Granqvist C G, et al. New approaches for improving selectivity and sensitivity of resistive gas sensors: a review. Sens Rev, 2015, 35(4): 340 doi: 10.1108/SR-12-2014-0747
[8]
Fobelets K, Meghani M, Li C. Influence of minority carrier gas donors on low frequency noise in silicon nanowires. IEEE Trans Nanotechnol, 2014, 13(6): 1176 doi: 10.1109/TNANO.2014.2349738
[9]
Arafat M M, Dinan B, Akbar S A, et al. Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors, 2012, 12: 7207 doi: 10.3390/s120607207
[10]
Fobelets K. Conductivity and 1/f noise in Si nanowire arrays. E-MRS Fall Meeting, Warsaw (Poland), 2015
[11]
Schmidt V, Wittemann J V, Gösele U. Growth, thermodynamics, and electrical properties of silicon nanowires. Chem Rev, 2010, 110: 361 doi: 10.1021/cr900141g
[12]
Huang Z, Geyer N, Werner P, et al. Metal-assisted chemical etching of silicon: a review. Adv Mater, 2011, 23: 285 doi: 10.1002/adma.v23.2
[13]
Li C, Fobelets K, Liu C, et al. Ag-assisted lateral etching of Si nanowires and its application to nanowire transfer. Appl Phys Lett, 2013, 103: 183102 doi: 10.1063/1.4826930
[14]
Huang Z P, Fang H, Zhu J. Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater, 2007, 19(5): 744 doi: 10.1002/(ISSN)1521-4095
[15]
Wang T, Huang D, Yang Z, et al. A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett, 2016, 8(2): 95 doi: 10.1007/s40820-015-0073-1
[16]
Yavari F, Castillo E, Gullapalli H, et al. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl Phys Lett, 2012, 100: 203120 doi: 10.1063/1.4720074
[17]
Rumyantsev S, Liu G, Shur M S, et al. Selective gas sensing with a single pristine graphene transistor. Nano Lett, 2012, 12: 2294 doi: 10.1021/nl3001293
[18]
C Li, K Fobelets, C Liu, et al. Ag-assisted lateral etching of Si nanowires and its application to nanowire transfer. Appl Phys Lett, 2013, 103(18): 183102 doi: 10.1063/1.4826930
[19]
Panteli C, Sydoruk O, Fobelets K. Graphene suspended graphene on silicon nanowire arrays platform for enhanced gas sensing. ECS Meetings Abstracts, 2017: 769
[20]
To W K, Tsang C H, Li H H, et al. Fabrication of n-type mesoporous silicon nanowires by one-step etching. Nano Lett, 2011, 11(12): 5252 doi: 10.1021/nl202674t
[21]
Goniszewski S, Gallop J, Adabi M, et al. Self-supporting graphene films and their applications. IET Circuits, Devices and Systems, 2015, 9(6): 420 doi: 10.1049/iet-cds.2015.0149
[22]
Yi J, Lee J M, Park W I. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens Actuat B, 2011, 155: 264 doi: 10.1016/j.snb.2010.12.033
[23]
Ye Z, Zhang G, Li B, et al. Influence of airflow and liquid properties on the mass transfer coefficient of ammonia in aqueous solutions. Biosystems Eng, 2008, 100: 422 doi: 10.1016/j.biosystemseng.2008.04.016
[24]
Stiver W, Mackay D. Evaporation rate of spills of hydrocarbons and petroleum mixtures. Environ Sci Technol, 1984, 18: 834 doi: 10.1021/es00129a006
[25]
Li C, Fobelets K, Jalal S N S, et al. Influence of chemical modification on the electrical properties of Si nanowire arrays. Adv Mater Res, 2011, 160–162: 1331
[26]
Li C, E Krali, K Fobelets, et al. Conductance modulation of Si nanowire arrays. Appl Phys Lett, 2012, 101(22): 222101 doi: 10.1063/1.4768692
[27]
Li C, Zhang C, Fobelets K, et al. Impact of ammonia on the electrical properties of p-type Si nanowire arrays. J Appl Phys, 2013, 114(17): 173702 doi: 10.1063/1.4827184
[28]
Li C, Cheng B, Wang Q, et al. Conductance modulation of Si nanowire array. IUMRS-ICAM International Conference on Advanced Materials, 2013
[29]
Fobelets K, Ahmad M M, Rumyantsev S, et al. Influence of ambient on conductivity and 1/f noise in Si nanowire arrays. International Conference on Noise and Fluctuations, 2013
[30]
Fobelets K, Meghani M, Ahmad M M. Conductance and low frequency noise in Si nanowire arrays for gas sensing. 39th International Conference on Micro And Nano Engineering, 2013
[31]
Fobelets K, Meghan Mi, Li C. Influence of minority carrier gas donors on low frequency noise in silicon nanowires. IEEE Trans Nanotechnol, 2014, 13(6): 1176 doi: 10.1109/TNANO.2014.2349738
[32]
Balandin A A. Low-frequency 1/f noise in graphene devices. Nat Nanotechnol, 2013, 8: 549 doi: 10.1038/nnano.2013.144
Fig. 2.  SEM images. (a) Top view of a graphene layer covering 2/3 rd of the Si NWA in the image. Graphene can be seen as a milky shine on top of the Si NWA. (b) Side view of the suspended graphene layer that can be seen as a white sheet on top of the Si NWA.

Fig. 1.  SEM of (a) side view of a MACE etched Si nanowire array and (b) top view after metallisation.

Fig. 3.  SEM of the nanowire array used for suspended graphene sensing using 4 ml AgNO3.

Fig. 4.  (Color online) (a) The measurement set-up for resistance measurements. 1: z-axis translation, 2: flat spring loaded probe tip for Si NWA measurements, 3: back plate for back contact, 4: 4 parallel, equidistant (3 mm) probe tips for graphene measurements. Probe configuration 2 and 4 can be interchanged. All probe tips are Au coated and have a diameter of 3 mm. (b1) Closed container and schematic set-up ((b2) container, (b3) conical flask attached to container) used for low frequency noise measurements on Si NWA.

Fig. 5.  (Color online) (a) The measured normalized resistance variation as a function of time for the adsorption/desorption process on p-Si NWA. (b) The normalized low frequency current noise spectra with and without NH3 (both axes are on log scale).

Fig. 6.  (Color online) (a) The measured normalized resistance variation as a function of time for the adsorption process on n-Si NWA (full line) and p-Si NWA (dashed line). (b) The normalized low frequency current noise spectra with and without NH3 (both axes are on log scale).

Fig. 7.  The measured normalized resistance variation as a function of time for the adsorption process on suspended graphene on an NWA (full line) and graphene on SiO2 (dashed line).

Fig. 8.   (Color online)  The normalized low frequency current noise spectra with and without NH3. (a) Suspended graphene on Si NWA. (b) Graphene on SiO2 (both axes are on log scale).

Table 1.   Different configurations of nanowire/rod based sensors with their particular characteristics[10].

Nano-wires/-rods Structure Response time Effective detection surface Carrier transport mechanism Fabrication
Single Fast (~10 s) Small 1D Complex
Aligned array Slow (order of minutes) Large 1D Complex/easy
Random distribution Slow (order of minutes) Large Hopping Easy
DownLoad: CSV
[1]
Timmer B, Olthuis W, van den Berg A . Ammonia sensors and their applications—a review. Sens Actuators B, 2005, 107(2): 666 doi: 10.1016/j.snb.2004.11.054
[2]
IRC Ammonia sensor overview. Industrial regfrigeration consortium, Dec. 2 2002. On-line: https://www.irc.wisc.edu/file. php?ID=44
[3]
Brannelly N T, Hamilton-Shield J P, Killard A J. The measurement of ammonia in human breath and its potential in clinical diagnostics. Crit Rev Anal Chem, 2016, 46(6): 490 doi: 10.1080/10408347.2016.1153949
[4]
Lakkis S, Younes R, Alayli Y, et al. Review of recent trends in gas sensing technologies and their miniaturization potential. Sens Rev, 2014, 34(1): 24 doi: 10.1108/SR-11-2012-724
[5]
Neri G. First fifty years of chemoresistive gas sensors. Chemosensors, 2015, 3: 1 doi: 10.3390/chemosensors3010001
[6]
Korotcenkov G, Brinzari V, Cho B K. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Microchim Acta, 2016, 183: 1033 doi: 10.1007/s00604-015-1741-z
[7]
Smulko J M, Trawka M, Granqvist C G, et al. New approaches for improving selectivity and sensitivity of resistive gas sensors: a review. Sens Rev, 2015, 35(4): 340 doi: 10.1108/SR-12-2014-0747
[8]
Fobelets K, Meghani M, Li C. Influence of minority carrier gas donors on low frequency noise in silicon nanowires. IEEE Trans Nanotechnol, 2014, 13(6): 1176 doi: 10.1109/TNANO.2014.2349738
[9]
Arafat M M, Dinan B, Akbar S A, et al. Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors, 2012, 12: 7207 doi: 10.3390/s120607207
[10]
Fobelets K. Conductivity and 1/f noise in Si nanowire arrays. E-MRS Fall Meeting, Warsaw (Poland), 2015
[11]
Schmidt V, Wittemann J V, Gösele U. Growth, thermodynamics, and electrical properties of silicon nanowires. Chem Rev, 2010, 110: 361 doi: 10.1021/cr900141g
[12]
Huang Z, Geyer N, Werner P, et al. Metal-assisted chemical etching of silicon: a review. Adv Mater, 2011, 23: 285 doi: 10.1002/adma.v23.2
[13]
Li C, Fobelets K, Liu C, et al. Ag-assisted lateral etching of Si nanowires and its application to nanowire transfer. Appl Phys Lett, 2013, 103: 183102 doi: 10.1063/1.4826930
[14]
Huang Z P, Fang H, Zhu J. Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater, 2007, 19(5): 744 doi: 10.1002/(ISSN)1521-4095
[15]
Wang T, Huang D, Yang Z, et al. A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett, 2016, 8(2): 95 doi: 10.1007/s40820-015-0073-1
[16]
Yavari F, Castillo E, Gullapalli H, et al. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl Phys Lett, 2012, 100: 203120 doi: 10.1063/1.4720074
[17]
Rumyantsev S, Liu G, Shur M S, et al. Selective gas sensing with a single pristine graphene transistor. Nano Lett, 2012, 12: 2294 doi: 10.1021/nl3001293
[18]
C Li, K Fobelets, C Liu, et al. Ag-assisted lateral etching of Si nanowires and its application to nanowire transfer. Appl Phys Lett, 2013, 103(18): 183102 doi: 10.1063/1.4826930
[19]
Panteli C, Sydoruk O, Fobelets K. Graphene suspended graphene on silicon nanowire arrays platform for enhanced gas sensing. ECS Meetings Abstracts, 2017: 769
[20]
To W K, Tsang C H, Li H H, et al. Fabrication of n-type mesoporous silicon nanowires by one-step etching. Nano Lett, 2011, 11(12): 5252 doi: 10.1021/nl202674t
[21]
Goniszewski S, Gallop J, Adabi M, et al. Self-supporting graphene films and their applications. IET Circuits, Devices and Systems, 2015, 9(6): 420 doi: 10.1049/iet-cds.2015.0149
[22]
Yi J, Lee J M, Park W I. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens Actuat B, 2011, 155: 264 doi: 10.1016/j.snb.2010.12.033
[23]
Ye Z, Zhang G, Li B, et al. Influence of airflow and liquid properties on the mass transfer coefficient of ammonia in aqueous solutions. Biosystems Eng, 2008, 100: 422 doi: 10.1016/j.biosystemseng.2008.04.016
[24]
Stiver W, Mackay D. Evaporation rate of spills of hydrocarbons and petroleum mixtures. Environ Sci Technol, 1984, 18: 834 doi: 10.1021/es00129a006
[25]
Li C, Fobelets K, Jalal S N S, et al. Influence of chemical modification on the electrical properties of Si nanowire arrays. Adv Mater Res, 2011, 160–162: 1331
[26]
Li C, E Krali, K Fobelets, et al. Conductance modulation of Si nanowire arrays. Appl Phys Lett, 2012, 101(22): 222101 doi: 10.1063/1.4768692
[27]
Li C, Zhang C, Fobelets K, et al. Impact of ammonia on the electrical properties of p-type Si nanowire arrays. J Appl Phys, 2013, 114(17): 173702 doi: 10.1063/1.4827184
[28]
Li C, Cheng B, Wang Q, et al. Conductance modulation of Si nanowire array. IUMRS-ICAM International Conference on Advanced Materials, 2013
[29]
Fobelets K, Ahmad M M, Rumyantsev S, et al. Influence of ambient on conductivity and 1/f noise in Si nanowire arrays. International Conference on Noise and Fluctuations, 2013
[30]
Fobelets K, Meghani M, Ahmad M M. Conductance and low frequency noise in Si nanowire arrays for gas sensing. 39th International Conference on Micro And Nano Engineering, 2013
[31]
Fobelets K, Meghan Mi, Li C. Influence of minority carrier gas donors on low frequency noise in silicon nanowires. IEEE Trans Nanotechnol, 2014, 13(6): 1176 doi: 10.1109/TNANO.2014.2349738
[32]
Balandin A A. Low-frequency 1/f noise in graphene devices. Nat Nanotechnol, 2013, 8: 549 doi: 10.1038/nnano.2013.144
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4975 Times PDF downloads: 46 Times Cited by: 0 Times

    History

    Received: 18 September 2017 Revised: 01 December 2017 Online: Uncorrected proof: 24 January 2018Published: 01 June 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li. Ammonia sensing using arrays of silicon nanowires and graphene[J]. Journal of Semiconductors, 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001 ****K. Fobelets, C. Panteli, O. Sydoruk, C B Li. Ammonia sensing using arrays of silicon nanowires and graphene[J]. J. Semicond., 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001.
      Citation:
      K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li. Ammonia sensing using arrays of silicon nanowires and graphene[J]. Journal of Semiconductors, 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001 ****
      K. Fobelets, C. Panteli, O. Sydoruk, C B Li. Ammonia sensing using arrays of silicon nanowires and graphene[J]. J. Semicond., 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001.

      Ammonia sensing using arrays of silicon nanowires and graphene

      DOI: 10.1088/1674-4926/39/6/063001
      More Information
      • Corresponding author: k.fobelets@imperial.ac.uk
      • Received Date: 2017-09-18
      • Revised Date: 2017-12-01
      • Published Date: 2018-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return