Citation: |
Qi Yan, Liang Gao, Jiang Tang, Huan Liu. Flexible and stretchable photodetectors and gas sensors for wearable healthcare based on solution-processable metal chalcogenides[J]. Journal of Semiconductors, 2019, 40(11): 111604. doi: 10.1088/1674-4926/40/11/111604
****
Q Yan, L Gao, J Tang, H Liu, Flexible and stretchable photodetectors and gas sensors for wearable healthcare based on solution-processable metal chalcogenides[J]. J. Semicond., 2019, 40(11): 111604. doi: 10.1088/1674-4926/40/11/111604.
|
Flexible and stretchable photodetectors and gas sensors for wearable healthcare based on solution-processable metal chalcogenides
DOI: 10.1088/1674-4926/40/11/111604
More Information
-
Abstract
Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring. By attaching to the skin surface, these sensors are closely related to body signals (such as heart rate, blood oxygen saturation, breath markers, etc.) and ambient signals (such as ultraviolet radiation, inflammable and explosive, toxic and harmful gases), thus providing new opportunities for human activity monitoring and personal telemedicine care. Here we focus on photodetectors and gas sensors built from metal chalcogenide, which have made great progress in recent years. Firstly, we present an overview of healthcare applications based on photodetectors and gas sensors, and discuss the requirement associated with these applications in detail. We then discuss advantages and properties of solution-processable metal chalcogenides, followed by some recent achievements in health monitoring with photodetectors and gas sensors based on metal chalcogenides. Last we present further research directions and challenges to develop an integrated wearable platform for monitoring human activity and personal healthcare. -
References
[1] Gary L A, Patrick J D. The disability paradox: high quality of life against all odds. Soc Sci Med, 1999, 48, 977 doi: 10.1016/S0277-9536(98)00411-0[2] Ren X, Chen C, Masaaki N, et al. Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J, 2011, 170, 395 doi: 10.1016/j.cej.2010.08.045[3] Ashraf D, Aboul E H. Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors, 2011, 11, 5561 doi: 10.3390/s110605561[4] Zheng Y L, Ding X R, Carmen C Y P, et al. Unobtrusive sensing and wearable devices for health informatics. IEEE Trans Biomed Eng, 2014, 61, 1538 doi: 10.1109/TBME.2014.2309951[5] Yasser K, Aminy E O, Claire M L, et al. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater, 2016, 28, 4373 doi: 10.1002/adma.201504366[6] Jaemin K, Mincheol L, Hyung J S, et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun, 2014, 5, 5747 doi: 10.1038/ncomms6747[7] Joshua R W, Joseph W. Wearable electrochemical sensors and biosensors: a review. Electroanalysis, 2013, 25, 29 doi: 10.1002/elan.201200349[8] Li L, Lou Z, Chen D, et al. Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small, 2018, 14, 1702829 doi: 10.1002/smll.201702829[9] Lou Z, Wang L, Shen G. Recent advances in smart wearable sensing systems. Adv Mater Technol, 2018, 3, 1800444 doi: 10.1002/admt.201800444[10] Webb R C, Bonifas A P, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater, 2013, 12, 938 doi: 10.1038/nmat3755[11] Wang X, Gu Y, Xiong Z, et al. Electronic skin: silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater, 2014, 26, 1336 doi: 10.1002/adma.201304248[12] Morteza A, Aekachan P, Sangjun L, et al. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano, 2014, 8, 5154 doi: 10.1021/nn501204t[13] Wang X, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring. Small, 2017, 13, 1602790 doi: 10.1002/smll.201602790[14] Xu X, Chen J, Cai S, et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv Mater, 2018, 30, 1803165 doi: 10.1002/adma.201803165[15] Gao L, Dong D, He J, et al. Wearable and sensitive heart-rate detectors based on PbS QDs and multiwalled carbon nanotube blend film. Appl Phys Lett, 2014, 105, 153702 doi: 10.1063/1.4898680[16] Setlow R B. The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci, 1974, 71, 3363 doi: 10.1073/pnas.71.9.3363[17] Saraiya M, Glanz K, Briss P A, et al. Interventions to prevent skin cancer by reducing exposure to ultraviolet radiations: a systematic review. Am J Preven Med, 2004, 27, 422 doi: 10.1016/j.amepre.2004.08.009[18] Narayanan D L, Saladi R N, Fox J L. Ultraviolet radiation and skin cancer. Int J Dermat, 2010, 49, 978 doi: 10.1111/j.1365-4632.2010.04474.x[19] Palo P, Lutgarde T, Jan A S, et al. Predictive value of clinic and ambulatory heart rate formortality in elderly subjects with systolic hypertension. Arch Inter Med, 2002, 162, 2313 doi: 10.1001/archinte.162.20.2313[20] Keytel R, Goedecke H, Noakes D, et al. Prediction of energy expenditure from heart rate monitoring during submaximal exercise. J Sports Sci, 2005, 23, 289 doi: 10.1080/02640410470001730089[21] Achten J, Jeukendrup E. Heart rate monitoring, applications and limitations. Sports Med, 2003, 33, 517 doi: 10.2165/00007256-200333070-00004[22] Hamootal D, Meir N, Dror F. Simulation of oxygen saturation measurement in a single blood vein. Opt Lett, 2016, 41, 4312 doi: 10.1364/OL.41.004312[23] Liu H, Li M, Oleksandr V, et al. Physically flexible, rapid-response gas sensor based on colloidal QDs solids. Adv Mater, 2014, 26, 2718 doi: 10.1002/adma.201304366[24] Li M, Zhang W, Shao G, et al. Sensitive NO2 gas sensors employing spray-coated QDs. Thin Solid Films, 2016, 618, 271 doi: 10.1016/j.tsf.2016.08.023[25] Paul U, William H S. SO2 in the atmosphere: a wealth of monitoring data, but few reaction rate studies. ACS Publications, 1969[26] Michal S, Inigo G, Reto P, et al. A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv Mater, 2018, 30, 1804098 doi: 10.1002/adma.201804098[27] Zimmerling R, Dammgen U, Kusters A, et al. Response of a grassland ecosystem to air pollutants. IV. the chemical climate: concentrations of relevant non-criteria pollutants (trace gases and aerosols). Environ Pollut, 1996, 91, 139 doi: 10.1016/0269-7491(95)00058-5[28] Odlyha M, Foster G. M, Cohen N. S, et al Microclimate monitoring of indoor environments using piezoelectric quartz crystal humidity sensors. J Environ Monit, 2000, 2, 127 doi: 10.1039/a909417b[29] Emil J B. Indoor pollution and its impact on respiratory health. Annals of Allergt Asthma and Immunology, 2001, 87, 33[30] Becker T, Muhlberger S, Bosch-von Braunmuhl C, et al. Air pollution monitoring using tin-oxide-based microreactor systems. Sens Actuators B, 2000, 69, 108 doi: 10.1016/S0925-4005(00)00516-5[31] Rajitha S, Swapna T. A security alert system using GSM for gas leakage. Int J VLSI Embed Syst, 2012, 03, 173[32] James E E, Alexander S. Carbon nanotube based gas sensors toward breath analysis. ChemPlusChem, 2016, 81, 1248 doi: 10.1002/cplu.201600478[33] Christopher O O, Mohamed Z, William I S, et al. Exhaled pentane levels in acute asthma. Chest, 1997, 111, 862 doi: 10.1378/chest.111.4.862[34] Zeev W W, Alan J B, Paul A S, et al. High breath pentane concentrations during acute myocardial infarction. Lancet, 1991, 337, 933 doi: 10.1016/0140-6736(91)91569-G[35] Rossana S K, Kevin D C. Potential applications of breath isoprene as a biomarker in modern medicine: a concise overview. Wien Klin Wochenschr, 2005, 117, 180 doi: 10.1007/s00508-005-0336-9[36] Dong L, Shen X, Deng C. Development of gas chromatography–mass spectrometry following headspace single-drop microextraction and simultaneous derivatization for fast determination of the diabetes biomarker, acetone in human blood samples. Analyt Chim Acta, 2006, 569, 91 doi: 10.1016/j.aca.2006.03.095[37] Hçgman M, Holmkvist T, Wegener T, et al. Extended NO analysis applied to patients with COPD, allergic asthma and allergic rhinitis. Respir Med, 2002, 96, 24 doi: 10.1053/rmed.2001.1204[38] Di N C, Paolesse R, Martinelli E, et al. Solid-state gas sensors for breath analysis: a review. Anal Chim Acta, 2014, 824, 1 doi: 10.1016/j.aca.2014.03.014[39] Gao M R, Xu Y F, Jiang J, et al. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev, 2013, 42, 2986 doi: 10.1039/c2cs35310e[40] Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem Rev, 2005, 105, 1025 doi: 10.1021/cr030063a[41] Lai C H, Lu M Y, Chen L J. Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem, 2012, 22, 19 doi: 10.1039/C1JM13879K[42] Liu R, Duay J, Lee S B. Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun, 2011, 47, 1384 doi: 10.1039/C0CC03158E[43] Galileo S, Kaushik R C, Jegadesan S, et al. Organic and inorganic blocking layers for solution-processed colloidal PbSe nanocrystal infrared photodetectors. Adv Funct Mater, 2011, 21, 167 doi: 10.1002/adfm.201001328[44] Amol S, Li X, Vladimir P, et al. Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids. Nano Lett, 2007, 7(10), 2999 doi: 10.1021/nl0713023[45] James W G, Katherine L R, Zhang J, et al. Synthesis and characterization of Au/Bi core/shell nanocrystals: a precursor toward II−VI nanowires. J Phys Chem B, 2004, 108, 9745 doi: 10.1021/jp0496856[46] Supriya A P, Hwang Y T, Vijaykumar V J, et al. Solution processed growth and photoelectrochemistry of Bi2S3 nanorods thin film. J Photochem Photobiol A, 2017, 332, 174 doi: 10.1016/j.jphotochem.2016.07.037[47] Sean K, Emmanuel L, Vuk B, et al. Mid-infrared HgTe colloidal QDs photodetectors. Nat Photonics, 2011, 5, 489 doi: 10.1038/nphoton.2011.142[48] Jung H Y, Jin J, Hyun M P, et al. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J Am Chem Soc, 2005, 127, 5662 doi: 10.1021/ja044593f[49] Byron G, Wu Y, Yin Y, et al. Single-crystalline Nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se. J Am Chem Soc, 2001, 123, 11500 doi: 10.1021/ja0166895[50] Manish C, Hyeon S S, Goki E, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5, 263 doi: 10.1038/nchem.1589[51] Huang X, Zeng Z, Zhang H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev, 2013, 42, 1934 doi: 10.1039/c2cs35387c[52] Wang Q H, Kourosh K Z, Andras K, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7, 699 doi: 10.1038/nnano.2012.193[53] Xu M, Tao L, Shi M, et al. Graphene-like two-dimensional materials. Chem Rev, 2013, 113, 3766 doi: 10.1021/cr300263a[54] Valeria N, Manish C, Mercouri G K, et al. Liquid exfoliation of layered materials. Science, 2013, 340, 1226419 doi: 10.1126/science.1226419[55] Sun Y, Gao S, Xie Y. Atomically-thick two-dimensional crystals: electronic structure regulation and energy device construction. Chem Soc Rev, 2014, 43, 530 doi: 10.1039/C3CS60231A[56] Li H, Wu J, Yin Z, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res, 2014, 47, 1067 doi: 10.1021/ar4002312[57] Marseglia E A. Transition metal dichalcogenides and their intercalates. Int Rev Phys Chem, 1983, 3, 177 doi: 10.1080/01442358309353343[58] Wilson J A, Yoffe A D. The transition metal dichalcogenides discussion and interpretation of the observed optical. electrical and structural properties. Adv Phys, 1969, 18, 193 doi: 10.1080/00018736900101307[59] Jonathan N C, Mustafa L, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331, 568 doi: 10.1126/science.1194975[60] Seo J W, Jun Y W, Park S W, et al. Two-dimensional nanosheet crystals. Angewandte Chemie International Edition, 2007, 46, 8828 doi: 10.1002/anie.200703175[61] Zhang J, Boris D C, Ryan W C, et al. Preparation of Cd/Pb chalcogenide heterostructured janus particles via controllable cation exchange. ACS Nano, 2015, 9, 7151 doi: 10.1021/acsnano.5b01859[62] Dai X, Zhang Z, Jin Y, et al. Solution-processed, high-performance light-emitting diodes based on QDs. Nature, 2014, 515, 96 doi: 10.1038/nature13829[63] Liu Z, Peng S, Xie Q, et al. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process. Adv Mater, 2003, 15, 936 doi: 10.1002/adma.200304693[64] Yao W T, Yu S H, Wu Q S. From mesostructured wurtzite ZnS-nanowire/amine nanocomposites to ZnS nanowires exhibiting quantum size effects: a mild-solution chemistry approach. Adv Funct Mater, 2007, 17, 623 doi: 10.1002/adfm.200600239[65] Dong H, Steven M H, Yin Y, et al. Cation exchange reactions in ionic nanocrystals. Science, 2004, 306, 1009 doi: 10.1126/science.1103755[66] Vanitha P V, O’Brien P. Phase control in the synthesis of magnetic iron sulfide nanocrystals from a cubane-type Fe−S cluster. J Am Chem Soc, 2008, 130, 17256 doi: 10.1021/ja8078187[67] Liu H, Tang J, Illan J K, et al. Electron acceptor materials engineering in colloidal QDs solar cells. Adv Mater, 2011, 23, 3832 doi: 10.1002/adma.201101783[68] Yao K, Gong W W, Hu Y F, et al. Individual Bi2S3 nanowire-based room-temperature H2 sensor. J Phys Chem, 2008, 112, 8721 doi: 10.1021/jp8022293[69] Cihan K, Chulmin C, Alireza K, et al. MoS2 nanosheet–Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen. Adv Sci, 2015, 2, 1500004 doi: 10.1002/advs.201500004[70] Steven A M, Gerasimos K, Zhang S, et al. Solution-processed PbS QDs infrared photodetectors and photovoltaics. Nat Mater, 2005, 4, 138 doi: 10.1038/nmat1299[71] Kangho L, Riley G, Niall M, et al. High-performance sensors based on molybdenum disulfide thin films. Adv Mater, 2013, 25, 6699 doi: 10.1002/adma.201303230[72] Dhawale D S, Dubal D P, Jamadade V S, et al. Room temperature LPG sensor based on n-CdS/p-polyaniline heterojunction. Sens Actuators B, 2010, 145, 205 doi: 10.1016/j.snb.2009.11.063[73] Song Z, Huang Z, Liu J, et al. Fully stretchable and humidity-resistant QDs gas sensors. ACS Sens, 2018, 3, 1048 doi: 10.1021/acssensors.8b00263[74] Li M, Zhou D, Zhao J, et al. Resistive gas sensors based on colloidal QDs (CQD) solids for hydrogen sulfide detection. Sens Actuators B, 2015, 217, 198 doi: 10.1016/j.snb.2014.07.058[75] Zhu L, Feng C, Li F, et al. Excellent gas sensing and optical properties of single-crystalline cadmium sulfide nanowires. RSC Adv, 2014, 4, 61691 doi: 10.1039/C4RA11010B -
Proportional views