Citation: |
Zhuohui Wu, Jianchang Yan, Yanan Guo, Liang Zhang, Yi Lu, Xuecheng Wei, Junxi Wang, Jinmin Li. Study of the morphology evolution of AlN grown on nano-patterned sapphire substrate[J]. Journal of Semiconductors, 2019, 40(12): 122803. doi: 10.1088/1674-4926/40/12/122803
****
Z H Wu, J C Yan, Y N Guo, L Zhang, Y Lu, X C Wei, J X Wang, J M Li, Study of the morphology evolution of AlN grown on nano-patterned sapphire substrate[J]. J. Semicond., 2019, 40(12): 122803. doi: 10.1088/1674-4926/40/12/122803.
|
Study of the morphology evolution of AlN grown on nano-patterned sapphire substrate
DOI: 10.1088/1674-4926/40/12/122803
More Information
-
Abstract
This study focused on the evolution of growth front about AlN growth on nano-patterned sapphire substrate by metal-organic chemical vapor deposition. The substrate with concave cones was fabricated by nano-imprint lithography and wet etching. Two samples with different epitaxy procedures were fabricated, manifesting as two-dimensional growth mode and three-dimensional growth mode, respectively. The results showed that growth temperature deeply influenced the growth modes and thus played a critical role in the coalescence of AlN. At a relatively high temperature, the AlN epilayer was progressively coalescence and the growth mode was two-dimensional. In this case, we found that the inclined semi-polar facets arising in the process of coalescence were$\left\{ {11\bar 21} \right\}$ type. But when decreasing the temperature, the$\left\{ {11\bar 22} \right\}$ semi-polar facets arose, leading to inverse pyramid morphology and obtaining the three-dimensional growth mode. The 3D inverse pyramid AlN structure could be used for realizing 3D semi-polar UV-LED or facet-controlled epitaxial lateral overgrowth of AlN. -
References
[1] Ding K, Avrutin V, Özgür Ü, et al. Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes. Crystals, 2017, 7, 300 doi: 10.3390/cryst7100300[2] Romanov A E, Fini P, Speck J S. Modeling the extended defect evolution in lateral epitaxial overgrowth of GaN: Subgrain stability. J Appl Phys, 2003, 93, 106 doi: 10.1063/1.1524013[3] Imura M, Nakano K, Kitano T, et al. Microstructure of epitaxial lateral overgrown AlN on trench-patterned AlN template by high-temperature metal-organic vapor phase epitaxy. Appl Phys Lett, 2006, 89, 221901 doi: 10.1063/1.2364460[4] Kim M, Fujita T, Fukahori S, et al. AlGaN-based deep ultraviolet light-emitting diodes fabricated on patterned sapphire substrates. Appl Phys Express, 2011, 4, 092102 doi: 10.1143/APEX.4.092102[5] Dong P, Yan J, Wang J, et al. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl Phys Lett, 2013, 102 doi: 10.1063/1.4812237[6] Lee D, Lee J W, Jang J, et al. Improved performance of AlGaN-based deep ultraviolet light-emitting diodes with nano-patterned AlN/sapphire substrates. Appl Phys Lett, 2017, 110, 191103 doi: 10.1063/1.4983283[7] Chen Z, Qhalid Fareed R S, Gaevski M, et al. Pulsed lateral epitaxial overgrowth of aluminum nitride on sapphire substrates. Appl Phys Lett, 2006, 89, 081905 doi: 10.1063/1.2245436[8] Nakano K, Imura M, Narita G, et al. Epitaxial lateral overgrowth of AlN layers on patterned sapphire substrates. Phys Status Solidi A, 2006, 203, 1632 doi: 10.1002/pssa.v203:7[9] Imura M, Nakano K, Narita G, et al. Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. J Cryst Growth, 2007, 298, 257 doi: 10.1016/j.jcrysgro.2006.10.043[10] Mei J, Ponce F A, Fareed R S Q, et al. Dislocation generation at the coalescence of aluminum nitride lateral epitaxy on shallow-grooved sapphire substrates. Appl Phys Lett, 2007, 90, 221909 doi: 10.1063/1.2745207[11] Jain R, Sun W, Yang J, et al. Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl Phys Lett, 2008, 93, 051113 doi: 10.1063/1.2969402[12] Hirayama H, Fujikawa S, Norimatsu J, et al. Norimatsu J, et al. Fabrication of a low threading dislocation density ELO-AlN template for application to deep-UV LEDs. Phys Status Solidi C, 2009, 6(Suppl 2), S356 doi: 10.1063/1.1457523[13] Kueller V, Knauer A, Brunner F, et al. Growth of AlGaN and AlN on patterned AlN/sapphire templates. J Cryst Growth, 2011, 315, 200 doi: 10.1016/j.jcrysgro.2010.06.040[14] Kueller V, Knauer A, Reich C, et al. Modulated epitaxial lateral overgrowth of AlN for efficient UV LEDs. IEEE Photonics Technol Lett, 2012, 24, 1603 doi: 10.1109/LPT.2012.2210542[15] Knauer A, Kueller V, Zeimer U, et al. AlGaN layer structures for deep UV emitters on laterally overgrown AlN/sapphire templates. Phys Status Solidi A, 2013, 210, 451 doi: 10.1002/pssa.v210.3[16] Kueller V, Knauer A, Zeimer U, et al. Controlled coalescence of MOVPE grown AlN during lateral overgrowth. J Cryst Growth, 2013, 368, 83 doi: 10.1016/j.jcrysgro.2013.01.028[17] Zeimer U, Kueller V, Knauer A, et al. High quality AlGaN grown on ELO AlN/sapphire templates. J Cryst Growth, 2013, 377, 32 doi: 10.1016/j.jcrysgro.2013.04.041[18] Dong P, Yan J C, Zhang Y, et al. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. J Cryst Growth, 2014, 395, 9 doi: 10.1016/j.jcrysgro.2014.02.039[19] Zhang L, Xu F, Wang J, et al. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography. Sci Rep, 2016, 6, 35934 doi: 10.1038/srep35934[20] Wang T Y, Tasi C T, Lin K Y, et al. Surface evolution and effect of V/III ratio modulation on etch-pit-density improvement of thin AlN templates on nano-patterned sapphire substrates by metalorganic chemical vapor deposition. Appl Surf Sci, 2018, 455, 1123 doi: 10.1016/j.apsusc.2018.06.017[21] Hagedorn S, Knauer A, Mogilatenko A, et al. AlN growth on nano-patterned sapphire: A route for cost efficient pseudo substrates for deep UV LEDs. Phys Status Solidi A, 2016, 213, 3178 doi: 10.1002/pssa.201600218[22] Conroy M, Zubialevich V Z, Li H, et al. Epitaxial lateral overgrowth of AlN on self-assembled patterned nanorods. J Mater Chem C, 2015, 3, 431 doi: 10.1039/C4TC01536C[23] Beaumont B, Bousquet V, Vennegues P, et al. A two-step method for epitaxial lateral overgrowth of GaN. Phys Status Solidi A, 1999, 176, 567 doi: 10.1002/(SICI)1521-396X(199911)176:1<567::AID-PSSA567>3.0.CO;2-Z[24] Hiramatsu K, Nishiyama K, Onishi M, et al. Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO). J Cryst Growth, 2000, 221, 316 doi: 10.1016/S0022-0248(00)00707-7[25] Horibuchi K, Kuwano N, Miyake H, et al. Microstructures of two-step facet-controlled ELO-GaN grown by MOVPE method — effect of mask geometry. J Cryst Growth, 2002, 237, 1070 doi: 10.1016/S0022-0248(01)02138-8[26] Vennegues P, Beaumont B, Bousquet V, et al. Reduction mechanisms for defect densities in GaN using one- or two-step epitaxial lateral overgrowth methods. J Appl Phys, 2000, 87, 4175 doi: 10.1063/1.373048[27] Du D, Srolovitz D J, Coltrin M E, et al. Systematic prediction of kinetically limited crystal growth morphologies. Phys Rev Lett, 2005, 95, 155503 doi: 10.1103/PhysRevLett.95.155503[28] He C, Zhao W, Zhang K, et al. High-quality GaN epilayers achieved by facet-controlled epitaxial lateral overgrowth on sputtered AlN/PSS templates. ACS Appl Mater Interfaces, 2017, 9, 43386 doi: 10.1021/acsami.7b14801[29] Hiramatsu K, Nishiyama K, Motogaito A, et al. Recent progress in selective area growth and epitaxial lateral overgrowth of III-nitrides: Effects of reactor pressure in MOVPE growth. Phys Status Solidi A, 1999, 176, 535 doi: 10.1002/(ISSN)1521-396X[30] Li S, Wang A. GaN based nanorods for solid state lighting. J Appl Phys, 2012, 111, 071101 doi: 10.1063/1.3694674[31] Zhao L X, Yu Z G, Sun B, et al. Progress and prospects of GaN-based LEDs using nanostructures. Chin Phys B, 2015, 24, 068506 doi: 10.1088/1674-1056/24/6/068506[32] Tian Y, Yan J, Zhang Y, et al. Formation and characteristics of AlGaN-based three-dimensional hexagonal nanopyramid semi-polar multiple quantum wells. Nanoscale, 2016, 8, 11012 doi: 10.1039/C5NR09056C[33] Wunderer T, Feneberg M, Lipski F, et al. Three-dimensional GaN for semipolar light emitters. Phys Status Solidi B, 2011, 248, 549 doi: 10.1002/pssb.201046352[34] Wunderer T, Wang J, Lipski F, et al. Semipolar GaInN/GaN light-emitting diodes grown on honeycomb patterned substrates. Phys Status Solidi C, 2010, 7, 2140 doi: 10.1002/pssc.v7:7/8 -
Proportional views