J. Semicond. > 2019, Volume 40 > Issue 3 > 030201

RESEARCH HIGHLIGHTS

High density three dimensional integration of organic transistors

Xiaojun Guo

PDF

Turn off MathJax

High density three dimensional integration of organic transistors

Nat. Commun., 2019, doi: 10.1038/s41467-018-07904-5

With low temperature solution based processes and excellent mechanical flexibility, the organic field effect transistor (OFET) technology is promising for creating a wide range of emerging flexible electronics towards applications of internet of everything. However, despite of remarkable progress in developing high performance organic semiconductor materials, advances in low voltage high density organic integrated circuits remain very rare, especially in printing processes. The capability of integrating more transistors in a given area is important for making circuits to fulfill complex signal processing tasks.

A three-dimensional (3D) integration approach to achieve high density OFET integration has recently been demonstrated by the research team led by Sungjune Jung from Pohang University of Science and Technology (POSTECH), Korea, through collaboration with the Research Center for Organic Electronics (ROEL) at Yamagata University, Japan. In their work, 3D monolithic integration of dual-gate n-type and p-type OFETs is implemented on a plastic foil with a record density of 60 transistors per square centimetre. The fabricated devices exhibit good yield, uniformity, and stability. In addition, by interconnecting those integrated dual-gate OFETs, they propose a 3D universal NAND gate and its array as a new facile route to design printed flexible integrated circuits. It is further estimated that this technology would enable to use printing processes to fabricate up to about 2700 transistors on the size of a standard credit card, which is compatible with the transistor count of the first commercial 4-bit microprocessor. Such a 3D monolithic integration strategy is possible to be extended to other printable transistor technologies, such as oxide semiconductors, carbon nanotubes, and 2D materials.

Xiaojun Guo (Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China)

doi: 10.1088/1674-4926/40/3/030201



1

Precision photonic integration for future large-scale photonic integrated circuits

Xiangfei Chen

Journal of Semiconductors, 2019, 40(5): 050301. doi: 10.1088/1674-4926/40/5/050301

2

Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes

Jiazhen Sheng, Ki-Lim Han, TaeHyun Hong, Wan-Ho Choi, Jin-Seong Park, et al.

Journal of Semiconductors, 2018, 39(1): 011008. doi: 10.1088/1674-4926/39/1/011008

3

Oxide-based thin film transistors for flexible electronics

Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan, et al.

Journal of Semiconductors, 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005

4

Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques

Evangelos I. Dimitriadis, Nikolaos Georgoulas

Journal of Semiconductors, 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001

5

Effects of interface trap density on the electrical performance of amorphous InSnZnO thin-film transistor

Yongye Liang, Kyungsoo Jang, S. Velumani, Cam Phu Thi Nguyen, Junsin Yi, et al.

Journal of Semiconductors, 2015, 36(2): 024007. doi: 10.1088/1674-4926/36/2/024007

6

Analysis of charge density and Fermi level of AlInSb/InSb single-gate high electron mobility transistor

S. Theodore Chandra, N. B. Balamurugan, M. Bhuvaneswari, N. Anbuselvan, N. Mohankumar, et al.

Journal of Semiconductors, 2015, 36(6): 064003. doi: 10.1088/1674-4926/36/6/064003

7

Model development for analyzing 2DEG sheet charge density and threshold voltage considering interface DOS for AlInN/GaN MOSHEMT

Devashish Pandey, T.R. Lenka

Journal of Semiconductors, 2014, 35(10): 104001. doi: 10.1088/1674-4926/35/10/104001

8

The influence of the channel electric field distribution on the polarization Coulomb field scattering in AlN/GaN heterostructure field-effect transistors

Yingxia Yu, Zhaojun Lin, Yuanjie Lü, Zhihong Feng, Chongbiao Luan, et al.

Journal of Semiconductors, 2014, 35(12): 124007. doi: 10.1088/1674-4926/35/12/124007

9

Effect of the side-Ohmic contact processing on the polarization Coulomb field scattering in AlN/GaN heterostructure field-effect transistors

Jingtao Zhao, Zhaojun Lin, Chongbiao Luan, Ming Yang, Yang Zhou, et al.

Journal of Semiconductors, 2014, 35(12): 124003. doi: 10.1088/1674-4926/35/12/124003

10

Compact analytical model for single gate AlInSb/InSb high electron mobility transistors

S. Theodore Chandra, N.B. Balamurugan, G. Subalakshmi, T. Shalini, G. Lakshmi Priya, et al.

Journal of Semiconductors, 2014, 35(11): 114003. doi: 10.1088/1674-4926/35/11/114003

11

Performance analysis of silicon nanowire transistors considering effective oxide thickness of high-k gate dielectric

S. Theodore Chandra, N. B. Balamurugan

Journal of Semiconductors, 2014, 35(4): 044001. doi: 10.1088/1674-4926/35/4/044001

12

A process simplification scheme for fabricating CMOS polycrystalline-Si thin film transistors

Juang Miin-Horng, Chang Chia-Wei, Shye Der-Chih, Hwang Chuan-Chou, Wang Jih-Liang, et al.

Journal of Semiconductors, 2010, 31(6): 064003. doi: 10.1088/1674-4926/31/6/064003

13

Exponential dependence of potential barrier height on biased voltages of inorganic/organic static induction transistor

Zhang Yong, Yang Jianhong, Cai Xueyuan, Wang Zaixing

Journal of Semiconductors, 2010, 31(4): 044002. doi: 10.1088/1674-4926/31/4/044002

14

Humidity sensitive organic field effect transistor

I. Murtaza, Kh S. Karimov, Zubair Ahmad, I. Qazi, M. Mahroof-Tahir, et al.

Journal of Semiconductors, 2010, 31(5): 054001. doi: 10.1088/1674-4926/31/5/054001

15

An enhanced close-in phase noise LC-VCO using parasitic V-NPN transistors in a CMOS process

Gao Peijun, Oh N J, Min Hao

Journal of Semiconductors, 2009, 30(8): 085004. doi: 10.1088/1674-4926/30/8/085004

16

Silicide-block-film effects on high voltage drain-extended MOS transistors

Wang Lei, Gao Chao, Liu Bo, Hu Jian, Lee Po, et al.

Journal of Semiconductors, 2009, 30(3): 034003. doi: 10.1088/1674-4926/30/3/034003

17

Synthesis of organic semiconductor hexadecachloro zinc phthalocyanine and its gas sensitivity

Shi Yunbo, Lei Tingping, Li Zan, Xiu Debin, Zhao Wenjie, et al.

Journal of Semiconductors, 2009, 30(3): 034009. doi: 10.1088/1674-4926/30/3/034009

18

Total Dose Radiation-Hard 0.8μm SOI CMOS Transistors and ASIC

Xiao Zhiqiang, Hong Genshen, Zhang Bo, Liu Zhongli

Chinese Journal of Semiconductors , 2006, 27(10): 1750-1754.

19

Two-Dimensional Static Numerical Modeling and Simulation of AlGaN/GaN HEMT

Xue Lijun, Xia Yang, Liu Ming, Wang Yan, Shao Xue, et al.

Chinese Journal of Semiconductors , 2006, 27(2): 298-303.

20

AlGaN/GaN High Electron Mobility Transistors on Sapphires with fmax of 100GHz

Li Xianjie, Zeng Qingming, Zhou Zhou, Liu Yugui, Qiao Shuyun, et al.

Chinese Journal of Semiconductors , 2005, 26(11): 2049-2052.

  • Search

    Advanced Search >>

    GET CITATION

    Xiaojun Guo. High density three dimensional integration of organic transistors[J]. Journal of Semiconductors, 2019, 40(3): 030201. doi: 10.1088/1674-4926/40/3/030201
    X J Guo. High density three dimensional integration of organic transistors[J]. J. Semicond., 2019, 40(3): 030201. doi: 10.1088/1674-4926/40/3/030201.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3150 Times PDF downloads: 90 Times Cited by: 0 Times

    History

    Received: Revised: Online: Published: 01 March 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaojun Guo. High density three dimensional integration of organic transistors[J]. Journal of Semiconductors, 2019, 40(3): 030201. doi: 10.1088/1674-4926/40/3/030201 ****X J Guo. High density three dimensional integration of organic transistors[J]. J. Semicond., 2019, 40(3): 030201. doi: 10.1088/1674-4926/40/3/030201.
      Citation:
      Xiaojun Guo. High density three dimensional integration of organic transistors[J]. Journal of Semiconductors, 2019, 40(3): 030201. doi: 10.1088/1674-4926/40/3/030201 ****
      X J Guo. High density three dimensional integration of organic transistors[J]. J. Semicond., 2019, 40(3): 030201. doi: 10.1088/1674-4926/40/3/030201.

      High density three dimensional integration of organic transistors

      DOI: 10.1088/1674-4926/40/3/030201
      • Published Date: 2019-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return