Citation: |
Guiying Shen, Youwen Zhao, Yongbiao Bai, Jingming Liu, Hui Xie, Zhiyuan Dong, Jun Yang, Ding Yu. Photoluminescene study acceptor defects in lightly doped n type GaSb single crystals[J]. Journal of Semiconductors, 2019, 40(4): 042101. doi: 10.1088/1674-4926/40/4/042101
****
G Y Shen, Y W Zhao, Y B Bai, J M Liu, H Xie, Z Y Dong, J Yang, D Yu, Photoluminescene study acceptor defects in lightly doped n type GaSb single crystals[J]. J. Semicond., 2019, 40(4): 042101. doi: 10.1088/1674-4926/40/4/042101.
|
Photoluminescene study acceptor defects in lightly doped n type GaSb single crystals
DOI: 10.1088/1674-4926/40/4/042101
More Information
-
Abstract
Lightly Te-doped GaSb samples grown by the liquid encapsulated Czochralski (LEC) method have been studied by Hall measurements and low-temperature PL spectroscopy. The results suggest that acceptor-related antisite is the dominant defect in n-type GaSb with low Te-doping concentration. As the Te concentration increases, gallium vacancy related defects become the main acceptor. A new band of around 665 meV is observed in the GaSb sample with the lowest Te-doping concentration. The variation of the acceptor defects and their influence on the electronic and optical property on the n-GaSb single crystal are discussed based on the results.-
Keywords:
- Te-doped GaSb,
- Hall,
- native defects,
- PL
-
References
[1] Dutta P S, Bhat H L, Kumar V. The physics and technology of gallium antimonide: An emerging optoelectronic material. J Appl Phys, 1997, 81, 5821 doi: 10.1063/1.365356[2] Zia N, Viheriälä J, Koskinen R, et al. High power (60 mW) GaSb-based 1.9 μm superluminescent diode with cavity suppression element. Appl Phys Lett, 2016, 109, 231102 doi: 10.1063/1.4971972[3] Zhou X, Li D, Huang J, et al. Mid-wavelength type II InAs/GaSb superlattice infrared focal plane arrays. Infrared Phys Technol, 2016, 78, 263 doi: 10.1016/j.infrared.2016.08.014[4] Haugan H J, Brown G J, Szmulowicz F, et al. InAs/GaSb type-II superlattices for high performance mid-infrared detectors. J Cryst Growth, 2005, 278, 198 doi: 10.1016/j.jcrysgro.2005.01.006[5] Su J, Liu T, Liu J M, et al. Thermally induced native defect transform in annealed GaSb. Chin Phys B, 2016, 25, 077801 doi: 10.1088/1674-1056/25/7/077801[6] Kujala J, Segercrantz N, Tuomisto F, et al. Native point defects in GaSb. J Appl Phys, 2014, 116, 143508 doi: 10.1063/1.4898082[7] Segercrantz N, Slotte J, Makkonen I, et al. Point defect balance in epitaxial GaSb. Appl Phys Lett, 2014, 105, 082113 doi: 10.1063/1.4894473[8] Tahini H A, Chroneos A, Murphy S T, et al. Vacancies and defect levels in III–V semiconductors. J Appl Phys, 2013, 114, 063517 doi: 10.1063/1.4818484[9] Vlasov A S, Rakova E P, Khvostikov V P, et al. Native defect concentration in Czochralski-grown Te-doped GaSb by photoluminescence. Sol Energ Mat Sol C, 2010, 94, 1113 doi: 10.1016/j.solmat.2010.02.038[10] Hu W G, Wang Z, Su B F, et al. Gallium antisite defect and residual acceptors in undoped GaSb. Phys Lett A, 2004, 332, 286 doi: 10.1016/j.physleta.2004.09.056[11] Rudolph P, Czupalla M, Lux B. LEC growth of semi-insulating GaAs crystals in traveling magnetic field generated in a heater–magnet module. J Cryst Growth, 2009, 311, 4543 doi: 10.1016/j.jcrysgro.2009.08.024[12] Houchens B C, Becla P, Tritchler S E, et al. Crystal growth of bulk ternary semiconductors: comparison of GaInSb growth by horizontal Bridgman and horizontal traveling heater method. J Cryst Growth, 2010, 312, 1091 doi: 10.1016/j.jcrysgro.2009.12.051[13] Mo P G, Tan H Z, Du L X, et al. A novel technique for Czochralski growth of GaSb single crystals. J Cryst Growth, 1993, 126, 613 doi: 10.1016/0022-0248(93)90811-A[14] Pino R, Ko Y, Dutta P S. Enhancement of infrared transmission in GaSb bulk crystals by carrier compensation. J Appl Phys, 2004, 96, 1064 doi: 10.1063/1.1738527[15] Bai Y B, Zhao Y W, Shen G Y, et al. N-type GaSb single crystals with high below-band gap transmission. Chin Phys B, 2017, 26, 107801 doi: 10.1088/1674-1056/26/10/107801[16] Chandola A, Pino R, Dutta P S. Below bandgap optical absorption in tellurium-doped GaSb. Semicond Sci Technol, 2005, 20, 886 doi: 10.1088/0268-1242/20/8/046[17] Bignazzi A, Bosacchi A, Magnanini R. Photoluminescence study of heavy doping effects in Te-doped GaSb. J Appl Phys, 1997, 81, 7540 doi: 10.1063/1.365297[18] Wu M C, Chen C C. Photoluminescence of liquid-phase epitaxial Te-doped GaSb. J Appl Phys, 1993, 73, 8495 doi: 10.1063/1.354085[19] Dutta P S, Rao K S R K, Bhat H L, et al. Photoluminescence studies in bulk gallium antimonide. Appl Phys A, 1995, 61, 149 doi: 10.1007/BF01538381[20] Jiang W J, Sun Y M, Wu M C. Electrical and photoluminescent properties of high-quality GaSb and AlGaSb layers grown from Sb-rich solutions by liquid-phase epitaxy. J Appl Phys, 1995, 77, 1725 doi: 10.1063/1.359576 -
Proportional views