J. Semicond. > 2019, Volume 40 > Issue 4 > 042101

ARTICLES

Photoluminescene study acceptor defects in lightly doped n type GaSb single crystals

Guiying Shen1, Youwen Zhao1, 2, Yongbiao Bai1, , Jingming Liu1, Hui Xie1, Zhiyuan Dong1, Jun Yang1 and Ding Yu1, 2

+ Author Affiliations

 Corresponding author: Yongbiao Bai, baiyongbiao@semi.ac.cn

DOI: 10.1088/1674-4926/40/4/042101

PDF

Turn off MathJax

Abstract: Lightly Te-doped GaSb samples grown by the liquid encapsulated Czochralski (LEC) method have been studied by Hall measurements and low-temperature PL spectroscopy. The results suggest that acceptor-related antisite is the dominant defect in n-type GaSb with low Te-doping concentration. As the Te concentration increases, gallium vacancy related defects become the main acceptor. A new band of around 665 meV is observed in the GaSb sample with the lowest Te-doping concentration. The variation of the acceptor defects and their influence on the electronic and optical property on the n-GaSb single crystal are discussed based on the results.

Key words: Te-doped GaSbHallnative defectsPL



[1]
Dutta P S, Bhat H L, Kumar V. The physics and technology of gallium antimonide: An emerging optoelectronic material. J Appl Phys, 1997, 81, 5821 doi: 10.1063/1.365356
[2]
Zia N, Viheriälä J, Koskinen R, et al. High power (60 mW) GaSb-based 1.9 μm superluminescent diode with cavity suppression element. Appl Phys Lett, 2016, 109, 231102 doi: 10.1063/1.4971972
[3]
Zhou X, Li D, Huang J, et al. Mid-wavelength type II InAs/GaSb superlattice infrared focal plane arrays. Infrared Phys Technol, 2016, 78, 263 doi: 10.1016/j.infrared.2016.08.014
[4]
Haugan H J, Brown G J, Szmulowicz F, et al. InAs/GaSb type-II superlattices for high performance mid-infrared detectors. J Cryst Growth, 2005, 278, 198 doi: 10.1016/j.jcrysgro.2005.01.006
[5]
Su J, Liu T, Liu J M, et al. Thermally induced native defect transform in annealed GaSb. Chin Phys B, 2016, 25, 077801 doi: 10.1088/1674-1056/25/7/077801
[6]
Kujala J, Segercrantz N, Tuomisto F, et al. Native point defects in GaSb. J Appl Phys, 2014, 116, 143508 doi: 10.1063/1.4898082
[7]
Segercrantz N, Slotte J, Makkonen I, et al. Point defect balance in epitaxial GaSb. Appl Phys Lett, 2014, 105, 082113 doi: 10.1063/1.4894473
[8]
Tahini H A, Chroneos A, Murphy S T, et al. Vacancies and defect levels in III–V semiconductors. J Appl Phys, 2013, 114, 063517 doi: 10.1063/1.4818484
[9]
Vlasov A S, Rakova E P, Khvostikov V P, et al. Native defect concentration in Czochralski-grown Te-doped GaSb by photoluminescence. Sol Energ Mat Sol C, 2010, 94, 1113 doi: 10.1016/j.solmat.2010.02.038
[10]
Hu W G, Wang Z, Su B F, et al. Gallium antisite defect and residual acceptors in undoped GaSb. Phys Lett A, 2004, 332, 286 doi: 10.1016/j.physleta.2004.09.056
[11]
Rudolph P, Czupalla M, Lux B. LEC growth of semi-insulating GaAs crystals in traveling magnetic field generated in a heater–magnet module. J Cryst Growth, 2009, 311, 4543 doi: 10.1016/j.jcrysgro.2009.08.024
[12]
Houchens B C, Becla P, Tritchler S E, et al. Crystal growth of bulk ternary semiconductors: comparison of GaInSb growth by horizontal Bridgman and horizontal traveling heater method. J Cryst Growth, 2010, 312, 1091 doi: 10.1016/j.jcrysgro.2009.12.051
[13]
Mo P G, Tan H Z, Du L X, et al. A novel technique for Czochralski growth of GaSb single crystals. J Cryst Growth, 1993, 126, 613 doi: 10.1016/0022-0248(93)90811-A
[14]
Pino R, Ko Y, Dutta P S. Enhancement of infrared transmission in GaSb bulk crystals by carrier compensation. J Appl Phys, 2004, 96, 1064 doi: 10.1063/1.1738527
[15]
Bai Y B, Zhao Y W, Shen G Y, et al. N-type GaSb single crystals with high below-band gap transmission. Chin Phys B, 2017, 26, 107801 doi: 10.1088/1674-1056/26/10/107801
[16]
Chandola A, Pino R, Dutta P S. Below bandgap optical absorption in tellurium-doped GaSb. Semicond Sci Technol, 2005, 20, 886 doi: 10.1088/0268-1242/20/8/046
[17]
Bignazzi A, Bosacchi A, Magnanini R. Photoluminescence study of heavy doping effects in Te-doped GaSb. J Appl Phys, 1997, 81, 7540 doi: 10.1063/1.365297
[18]
Wu M C, Chen C C. Photoluminescence of liquid-phase epitaxial Te-doped GaSb. J Appl Phys, 1993, 73, 8495 doi: 10.1063/1.354085
[19]
Dutta P S, Rao K S R K, Bhat H L, et al. Photoluminescence studies in bulk gallium antimonide. Appl Phys A, 1995, 61, 149 doi: 10.1007/BF01538381
[20]
Jiang W J, Sun Y M, Wu M C. Electrical and photoluminescent properties of high-quality GaSb and AlGaSb layers grown from Sb-rich solutions by liquid-phase epitaxy. J Appl Phys, 1995, 77, 1725 doi: 10.1063/1.359576
Fig. 2.  (Color online) PL spectra of sample 2 at 10 K.

Fig. 1.  (Color online) PL spectra of p-type GaSb samples measured at 10 K.

Fig. 4.  (Color online) PL spectra of samples 5, 6 and 7 at 10 K.

Fig. 3.  (Color online) PL spectra of samples 1, 3 and 4 at 10 K.

Table 1.   Hall results of n-type Te-GaSb sample at room temperature.

Sample No.Mobility (cm2/(V·s))Carrier concentration (cm−3)Type
12.34 × 1031.66 × 1016n
22.83 × 1032.79 × 1016n
32.94 × 1035.24 × 1016n
42.96 × 1036.63 × 1016n
53.04 × 1037.84 × 1016n
63.34 × 1031.14 × 1017n
73.24 × 1031.38 × 1017n
86.41 × 1021.41 × 1017p
97.39 × 1021.14 × 1017p
DownLoad: CSV

Table 2.   The PL peak position and related transition of GaSb reported in the literature.

Energy (meV)TransitionQuota
812Band gapRef. [19] (4.2 K)
810Free excitonRef. [20] (20 K)
808Excitonic transitionRef. [18] (19 K)
802Donor-acceptor transitionRef. [19] (4.2 K)
797Excitonic transitionRef. [18] (19 K)
796, 792Exciton band to (VGa GaSb)0Ref. [19] (4.2 K)
781C-(VGa GaSb)0Ref. [19] (4.2 K)
777D+-(VGa GaSb)0Ref. [19] (4.2 K)
765LO phonon replica of 796 meV transitionRef. [18] (19 K)
760Acceptor BRef. [18] (19 K)
756Exciton band to GaSbRef. [5] (10 K)
746, 740LO phonon replica of 777 meVRef. [19] (4.2 K)
738C-(VGa GaSb TeSb )Ref. [18] (19 K)
710C-(VGa GaSb)Ref. [19] (4.2 K)
682LO phonon replica of 710 meVRef. [19] (4.2 K)
DownLoad: CSV

Table 3.   The position (meV) and intensity (a.u.) of resolved peak G, C and T.

Sample No.Peak positionStrength of peak GPeak positionStrength of peak CPeak positionStrength of peak T
16650.656831.267031.73
26640.526831.437061.68
36640.436851.527081.53
46650.426861.587071.56
56660.126920.927121.59
67000.837211.76
77120.757321.98
DownLoad: CSV
[1]
Dutta P S, Bhat H L, Kumar V. The physics and technology of gallium antimonide: An emerging optoelectronic material. J Appl Phys, 1997, 81, 5821 doi: 10.1063/1.365356
[2]
Zia N, Viheriälä J, Koskinen R, et al. High power (60 mW) GaSb-based 1.9 μm superluminescent diode with cavity suppression element. Appl Phys Lett, 2016, 109, 231102 doi: 10.1063/1.4971972
[3]
Zhou X, Li D, Huang J, et al. Mid-wavelength type II InAs/GaSb superlattice infrared focal plane arrays. Infrared Phys Technol, 2016, 78, 263 doi: 10.1016/j.infrared.2016.08.014
[4]
Haugan H J, Brown G J, Szmulowicz F, et al. InAs/GaSb type-II superlattices for high performance mid-infrared detectors. J Cryst Growth, 2005, 278, 198 doi: 10.1016/j.jcrysgro.2005.01.006
[5]
Su J, Liu T, Liu J M, et al. Thermally induced native defect transform in annealed GaSb. Chin Phys B, 2016, 25, 077801 doi: 10.1088/1674-1056/25/7/077801
[6]
Kujala J, Segercrantz N, Tuomisto F, et al. Native point defects in GaSb. J Appl Phys, 2014, 116, 143508 doi: 10.1063/1.4898082
[7]
Segercrantz N, Slotte J, Makkonen I, et al. Point defect balance in epitaxial GaSb. Appl Phys Lett, 2014, 105, 082113 doi: 10.1063/1.4894473
[8]
Tahini H A, Chroneos A, Murphy S T, et al. Vacancies and defect levels in III–V semiconductors. J Appl Phys, 2013, 114, 063517 doi: 10.1063/1.4818484
[9]
Vlasov A S, Rakova E P, Khvostikov V P, et al. Native defect concentration in Czochralski-grown Te-doped GaSb by photoluminescence. Sol Energ Mat Sol C, 2010, 94, 1113 doi: 10.1016/j.solmat.2010.02.038
[10]
Hu W G, Wang Z, Su B F, et al. Gallium antisite defect and residual acceptors in undoped GaSb. Phys Lett A, 2004, 332, 286 doi: 10.1016/j.physleta.2004.09.056
[11]
Rudolph P, Czupalla M, Lux B. LEC growth of semi-insulating GaAs crystals in traveling magnetic field generated in a heater–magnet module. J Cryst Growth, 2009, 311, 4543 doi: 10.1016/j.jcrysgro.2009.08.024
[12]
Houchens B C, Becla P, Tritchler S E, et al. Crystal growth of bulk ternary semiconductors: comparison of GaInSb growth by horizontal Bridgman and horizontal traveling heater method. J Cryst Growth, 2010, 312, 1091 doi: 10.1016/j.jcrysgro.2009.12.051
[13]
Mo P G, Tan H Z, Du L X, et al. A novel technique for Czochralski growth of GaSb single crystals. J Cryst Growth, 1993, 126, 613 doi: 10.1016/0022-0248(93)90811-A
[14]
Pino R, Ko Y, Dutta P S. Enhancement of infrared transmission in GaSb bulk crystals by carrier compensation. J Appl Phys, 2004, 96, 1064 doi: 10.1063/1.1738527
[15]
Bai Y B, Zhao Y W, Shen G Y, et al. N-type GaSb single crystals with high below-band gap transmission. Chin Phys B, 2017, 26, 107801 doi: 10.1088/1674-1056/26/10/107801
[16]
Chandola A, Pino R, Dutta P S. Below bandgap optical absorption in tellurium-doped GaSb. Semicond Sci Technol, 2005, 20, 886 doi: 10.1088/0268-1242/20/8/046
[17]
Bignazzi A, Bosacchi A, Magnanini R. Photoluminescence study of heavy doping effects in Te-doped GaSb. J Appl Phys, 1997, 81, 7540 doi: 10.1063/1.365297
[18]
Wu M C, Chen C C. Photoluminescence of liquid-phase epitaxial Te-doped GaSb. J Appl Phys, 1993, 73, 8495 doi: 10.1063/1.354085
[19]
Dutta P S, Rao K S R K, Bhat H L, et al. Photoluminescence studies in bulk gallium antimonide. Appl Phys A, 1995, 61, 149 doi: 10.1007/BF01538381
[20]
Jiang W J, Sun Y M, Wu M C. Electrical and photoluminescent properties of high-quality GaSb and AlGaSb layers grown from Sb-rich solutions by liquid-phase epitaxy. J Appl Phys, 1995, 77, 1725 doi: 10.1063/1.359576
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3758 Times PDF downloads: 63 Times Cited by: 0 Times

    History

    Received: 09 March 2018 Revised: 25 January 2019 Online: Accepted Manuscript: 16 February 2019Uncorrected proof: 22 February 2019Published: 08 April 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Guiying Shen, Youwen Zhao, Yongbiao Bai, Jingming Liu, Hui Xie, Zhiyuan Dong, Jun Yang, Ding Yu. Photoluminescene study acceptor defects in lightly doped n type GaSb single crystals[J]. Journal of Semiconductors, 2019, 40(4): 042101. doi: 10.1088/1674-4926/40/4/042101 ****G Y Shen, Y W Zhao, Y B Bai, J M Liu, H Xie, Z Y Dong, J Yang, D Yu, Photoluminescene study acceptor defects in lightly doped n type GaSb single crystals[J]. J. Semicond., 2019, 40(4): 042101. doi: 10.1088/1674-4926/40/4/042101.
      Citation:
      Guiying Shen, Youwen Zhao, Yongbiao Bai, Jingming Liu, Hui Xie, Zhiyuan Dong, Jun Yang, Ding Yu. Photoluminescene study acceptor defects in lightly doped n type GaSb single crystals[J]. Journal of Semiconductors, 2019, 40(4): 042101. doi: 10.1088/1674-4926/40/4/042101 ****
      G Y Shen, Y W Zhao, Y B Bai, J M Liu, H Xie, Z Y Dong, J Yang, D Yu, Photoluminescene study acceptor defects in lightly doped n type GaSb single crystals[J]. J. Semicond., 2019, 40(4): 042101. doi: 10.1088/1674-4926/40/4/042101.

      Photoluminescene study acceptor defects in lightly doped n type GaSb single crystals

      DOI: 10.1088/1674-4926/40/4/042101
      More Information
      • Corresponding author: baiyongbiao@semi.ac.cn
      • Received Date: 2018-03-09
      • Revised Date: 2019-01-25
      • Published Date: 2019-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return