J. Semicond. > 2019, Volume 40 > Issue 5 > 050402

NEWS AND VIEWS

Semiconductor-based terahertz frequency combs

Hua Li1, 2,

+ Author Affiliations

 Corresponding author: H Li, hua.li@mail.sim.ac.cn

DOI: 10.1088/1674-4926/40/5/050402

PDF

Turn off MathJax



[1]
Udem T, Holzwarth R, Hansch T W. Optical frequency metrology. Nature, 2002, 416, 233 doi: 10.1038/416233a
[2]
Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332, 555 doi: 10.1126/science.1193968
[3]
Köhler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser. Nature, 2002, 417, 156 doi: 10.1038/417156a
[4]
Oustinov D, Jukam N, Rungsawang R, et al. Phase seeding of a terahertz quantum cascade laser. Nat Commun, 2010, 1, 69 doi: 10.1038/ncomms1068
[5]
Barbieri S, Ravaro M, Gellie P, et al. Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis. Nat Photonics, 2011, 5, 306 doi: 10.1038/nphoton.2011.49
[6]
Burghoff D, Kao T Y, Han N R, et al. Terahertz laser frequency combs. Nat Photonics, 2014, 8, 462 doi: 10.1038/nphoton.2014.85
[7]
Wang F H, Nong H, Fobbe T, et al. Short Terahertz Pulse generation from a dispersion compensated modelocked semiconductor laser. Laser Photonics Rev, 2017, 11, 1700013 doi: 10.1002/lpor.201700013
[8]
Rösch M, Scalari G, Villares G, et al. On-chip, self-detected terahertz dual-comb source. Appl Phys Lett, 2016, 108, 171104 doi: 10.1063/1.4948358
[9]
Yang Y, Burghoff D, Hayton D J, et al. Terahertz multiheterodyne spectroscopy using laser frequency combs. Optica, 2016, 3, 499 doi: 10.1364/OPTICA.3.000499
Fig. 1.  (Color online) Frequency comb and its applications in spectroscopy and nonlinear dynamics of materials. fCEO and frep denote the carrier envelope offset frequency and repetition frequency of a frequency comb, respectively. fb1 and fb2 are the two repetition frequencies of two combs and the difference between the two is Δf (= fb2fb1) which is the line spacing of the down-converted dual-comb spectrum.

[1]
Udem T, Holzwarth R, Hansch T W. Optical frequency metrology. Nature, 2002, 416, 233 doi: 10.1038/416233a
[2]
Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332, 555 doi: 10.1126/science.1193968
[3]
Köhler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser. Nature, 2002, 417, 156 doi: 10.1038/417156a
[4]
Oustinov D, Jukam N, Rungsawang R, et al. Phase seeding of a terahertz quantum cascade laser. Nat Commun, 2010, 1, 69 doi: 10.1038/ncomms1068
[5]
Barbieri S, Ravaro M, Gellie P, et al. Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis. Nat Photonics, 2011, 5, 306 doi: 10.1038/nphoton.2011.49
[6]
Burghoff D, Kao T Y, Han N R, et al. Terahertz laser frequency combs. Nat Photonics, 2014, 8, 462 doi: 10.1038/nphoton.2014.85
[7]
Wang F H, Nong H, Fobbe T, et al. Short Terahertz Pulse generation from a dispersion compensated modelocked semiconductor laser. Laser Photonics Rev, 2017, 11, 1700013 doi: 10.1002/lpor.201700013
[8]
Rösch M, Scalari G, Villares G, et al. On-chip, self-detected terahertz dual-comb source. Appl Phys Lett, 2016, 108, 171104 doi: 10.1063/1.4948358
[9]
Yang Y, Burghoff D, Hayton D J, et al. Terahertz multiheterodyne spectroscopy using laser frequency combs. Optica, 2016, 3, 499 doi: 10.1364/OPTICA.3.000499
1

Effect of metal-fingers/doped-ZnO transparent electrode on performance of GaN/InGaN solar cell

S.R. Routray, T.R. Lenka

Journal of Semiconductors, 2017, 38(9): 092001. doi: 10.1088/1674-4926/38/9/092001

2

Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance

Sunny Anand, R.K. Sarin

Journal of Semiconductors, 2017, 38(2): 024001. doi: 10.1088/1674-4926/38/2/024001

3

The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS and Mn:Cr:CdS: first principles calculations

Azeem Nabi, Zarmeena Akhtar, Tahir Iqbal, Atif Ali, Arshad Javid, et al.

Journal of Semiconductors, 2017, 38(7): 073001. doi: 10.1088/1674-4926/38/7/073001

4

A 0.02% THD and 80 dB PSRR filterless class D amplifier with direct lithium battery hookup in mobile application

Hao Zheng, Zhangming Zhu, Rui Ma

Journal of Semiconductors, 2017, 38(7): 074002. doi: 10.1088/1674-4926/38/7/074002

5

Performance analysis of charge plasma based dual electrode tunnel FET

Sunny Anand, S. Intekhab Amin, R. K. Sarin

Journal of Semiconductors, 2016, 37(5): 054003. doi: 10.1088/1674-4926/37/5/054003

6

Electro-magnetic weak coupling optical polaron and temperature effect in quantum dot

M. Tiotsop, A. J. Fotue, S. C. Kenfack, N. Issofa, A. V. Wirngo, et al.

Journal of Semiconductors, 2015, 36(10): 102001. doi: 10.1088/1674-4926/36/10/102001

7

High efficiency and low electromagnetic interference boost DC-DC converter

Yajun Li, Xinquan Lai, Qiang Ye, Bing Yuan

Journal of Semiconductors, 2014, 35(4): 045002. doi: 10.1088/1674-4926/35/4/045002

8

Structural, morphological, dielectrical and magnetic properties of Mn substituted cobalt ferrite

S. P. Yadav, S. S. Shinde, A. A. Kadam, K. Y. Rajpure

Journal of Semiconductors, 2013, 34(9): 093002. doi: 10.1088/1674-4926/34/9/093002

9

A novel high performance ESD power clamp circuit with a small area

Yang Zhaonian, Liu Hongxia, Li Li, Zhuo Qingqing

Journal of Semiconductors, 2012, 33(9): 095006. doi: 10.1088/1674-4926/33/9/095006

10

Giant magnetoresistance in a two-dimensional electron gas modulated by ferromagnetic and Schottky metal stripes

Lu Jianduo, Xu Bin

Journal of Semiconductors, 2012, 33(7): 074007. doi: 10.1088/1674-4926/33/7/074007

11

A low power 14 bit 51.2 kS/s double-sampling extended counting ADC with a class-AB OTA

Chen Honglei, Wu Dong, Shen Yanzhao, Xu Jun

Journal of Semiconductors, 2012, 33(9): 095004. doi: 10.1088/1674-4926/33/9/095004

12

Design of low noise class D amplifiers using an integrated filter

Wang Haishi, Zhang Bo

Journal of Semiconductors, 2012, 33(11): 115002. doi: 10.1088/1674-4926/33/11/115002

13

Ways to suppress click and pop for class D amplifiers

Wang Haishi, Zhang Bo, Sun Jiang

Journal of Semiconductors, 2012, 33(8): 085005. doi: 10.1088/1674-4926/33/8/085005

14

Fabrication and characterization of a low frequency electromagnetic energy harvester

Abu Riduan Md. Foisal, Gwiy-Sang Chung

Journal of Semiconductors, 2012, 33(7): 074001. doi: 10.1088/1674-4926/33/7/074001

15

30-GHz millimeter-wave carrier generation with single sideband modulation based on stimulated Brillouin scattering

Luo Zhen'ao, Xie Liang, Qi Xiaoqiong, Wang Hui

Journal of Semiconductors, 2011, 32(9): 092004. doi: 10.1088/1674-4926/32/9/092004

16

Effect of Relaxation Time on Electron Transport Properties in Double-Barrier Structures

Dai Zhenhong, Ni Jun

Chinese Journal of Semiconductors , 2006, 27(4): 604-608.

17

Measurements of Carrier Confinement at β-FeSi2-Si Heterojunction by Electroluminescence

Li Cheng, T. Suemas, F. Hasegawa

Chinese Journal of Semiconductors , 2005, 26(2): 230-233.

18

A Wavelength Tunable DBR Laser Integrated with an Electro-Absorption Modulator by a Combined Method of SAG and QWI

Zhang Jing, Li Baoxia, Zhao Lingjuan, Wang Baojun, Zhou Fan, et al.

Chinese Journal of Semiconductors , 2005, 26(11): 2053-2057.

19

Full Band Monte Carlo Simulation of Electron Transport in Ge with Anisotropic Scattering Process

Chen, Yong, and, Ravaioli, Umberto, et al.

Chinese Journal of Semiconductors , 2005, 26(3): 465-471.

20

Ultra-Wideband Electromagnetic Radiation from GaAs Photoconductive Switches

Shi Wei,Jia Wanli, and Ji Weili

Chinese Journal of Semiconductors , 2005, 26(1): 11-15.

  • Search

    Advanced Search >>

    GET CITATION

    Guo Haiyan, Chen Zao, Zhang Bo, Li Zhaoji. An advanced monolithic digitalized random carrier frequency spread-spectrum clock generator for EMI suppression[J]. Journal of Semiconductors, 2010, 31(6): 065010. doi: 10.1088/1674-4926/31/6/065010
    Guo H Y, Chen Z, Zhang B, Li Z J. An advanced monolithic digitalized random carrier frequency spread-spectrum clock generator for EMI suppression[J]. J. Semicond., 2010, 31(6): 065010. doi: 10.1088/1674-4926/31/6/065010.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3794 Times PDF downloads: 79 Times Cited by: 0 Times

    History

    Received: Revised: Online: Accepted Manuscript: 13 April 2019Uncorrected proof: 15 April 2019Published: 08 May 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Guo Haiyan, Chen Zao, Zhang Bo, Li Zhaoji. An advanced monolithic digitalized random carrier frequency spread-spectrum clock generator for EMI suppression[J]. Journal of Semiconductors, 2010, 31(6): 065010. doi: 10.1088/1674-4926/31/6/065010 ****Guo H Y, Chen Z, Zhang B, Li Z J. An advanced monolithic digitalized random carrier frequency spread-spectrum clock generator for EMI suppression[J]. J. Semicond., 2010, 31(6): 065010. doi: 10.1088/1674-4926/31/6/065010.
      Citation:
      Hua Li. Semiconductor-based terahertz frequency combs[J]. Journal of Semiconductors, 2019, 40(5): 050402. doi: 10.1088/1674-4926/40/5/050402 ****
      H Li, Semiconductor-based terahertz frequency combs[J]. J. Semicond., 2019, 40(5): 050402. doi: 10.1088/1674-4926/40/5/050402.

      Semiconductor-based terahertz frequency combs

      DOI: 10.1088/1674-4926/40/5/050402
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return