REVIEWS

Atomically thin α-In2Se3: an emergent two-dimensional room temperature ferroelectric semiconductor

Yue Li1, 2, Ming Gong3, 4 and Hualing Zeng1, 2,

+ Author Affiliations

 Corresponding author: Hualing Zeng, hlzeng@ustc.edu.cn

PDF

Turn off MathJax

Abstract: Room temperature ferroelectric thin films are the key element of high-density nonvolatile memories in modern electronics. However, with the further miniaturization of the electronic devices beyond the Moore’s law, conventional ferroelectrics suffer great challenge arising from the critical thickness effect, where the ferroelectricity is unstable if the film thickness is reduced to nanometer or single atomic layer limit. Two-dimensional (2D) materials, thanks to their stable layered structure, saturate interfacial chemistry, weak interlayer couplings, and the benefit of preparing stable ultra-thin film at 2D limit, are promising for exploring 2D ferroelectricity and related device applications. Therefore, it provides an effective approach to overcome the limitation in conventional ferroelectrics with the study of 2D ferroelectricity in van der Waals (vdW) materials. In this review article, we briefly introduce recent progresses on 2D ferroelectricity in layered vdW materials. We will highlight the study on atomically thin α-In2Se3, which is an emergent ferroelectric semiconductor with the coupled in-plane and out-of-plane ferroelectricity. Furthermore, two prototype ferroelectric devices based on ferroelectric α-In2Se3 will also be reviewed.

Key words: electric polarization2D materials2D ferroelectrics



[1]
de Araujo C A P, Cuchiaro J D, McMillan L D, et al. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature, 1995, 374(6523), 627 doi: 10.1038/374627a0
[2]
Choi T, Lee S, Choi Y J, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324(5923), 63 doi: 10.1126/science.1168636
[3]
Lu H, Lipatov A, Ryu S, et al. Ferroelectric tunnel junctions with graphene electrodes. Nat Commun, 2014, 5, 5518 doi: 10.1038/ncomms6518
[4]
Scott J F, Paz de Araujo C A. Ferroelectric memories. Science, 1989, 246(4936), 1400 doi: 10.1126/science.246.4936.1400
[5]
Chu M W, Szafraniak I, Scholz R, et al. Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat Mater, 2004, 3(2), 87 doi: 10.1038/nmat1057
[6]
Stengel M, Vanderbilt D, Spaldin N A. Enhancement of ferroelectricity at metal–oxide interfaces. Nat Mater, 2009, 8, 392 doi: 10.1038/nmat2429
[7]
Lu H, Liu X, Burton J D, et al. Enhancement of ferroelectric polarization stability by interface engineering. Adv Mater, 2012, 24(9), 1209 doi: 10.1002/adma.v24.9
[8]
Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422(6931), 506 doi: 10.1038/nature01501
[9]
Gao P, Zhang Z Y, Li M Q, et al. Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. Nat Commun, 2017, 8, 15549 doi: 10.1038/ncomms15549
[10]
Xi X X, Wang Z F, Zhao W W, et al. Ising pairing in superconducting NbSe2 atomic layers. Nat Phys, 2015, 12, 139 doi: 10.1038/nphys3538
[11]
Xi X X, Zhao L, Wang Z F, et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nature Nanotech, 2015, 10, 765 doi: 10.1038/nnano.2015.143
[12]
Zeng H L, Dai J F, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotech, 2012, 7, 490 doi: 10.1038/nnano.2012.95
[13]
Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729), 94 doi: 10.1038/s41586-018-0626-9
[14]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6, 183 doi: 10.1038/nmat1849
[15]
Mak K F, Lee C G, Hone J, et al. Atomically thin MoS2 : a new direct-gap semiconductor. Phys Rev Lett, 2010, 105(13), 136805 doi: 10.1103/PhysRevLett.105.136805
[16]
Zeng H L, Cui X D. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem Soc Rev, 2015, 44(9), 2629 doi: 10.1039/C4CS00265B
[17]
Belianinov A, He Q, Dziaugys A, et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett, 2015, 15(6), 3808 doi: 10.1021/acs.nanolett.5b00491
[18]
Liu F C, You L, Seyler K L, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun, 2016, 7, 12357 doi: 10.1038/ncomms12357
[19]
Chang K, Liu J W, Lin H C, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353(6296), 274 doi: 10.1126/science.aad8609
[20]
Ding W J, Zhu J B, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2–VI3 van der Waals materials. Nat Commun, 2017, 8, 14956 doi: 10.1038/ncomms14956
[21]
Zhou Y, Wu D, Zhu Y H, et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett, 2017, 17(9), 5508 doi: 10.1021/acs.nanolett.7b02198
[22]
Cui C J, Hu W J, Yan X X, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett, 2018, 18(2), 1253 doi: 10.1021/acs.nanolett.7b04852
[23]
Poh S M, Tan S J R, Wang H, et al. Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction. Nano Lett, 2018, 18(10), 6340 doi: 10.1021/acs.nanolett.8b02688
[24]
Wan S Y, Li Y, Li W, et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale, 2018, 10(31), 14885 doi: 10.1039/C8NR04422H
[25]
Xiao J, Zhu H, Wang Y, et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys Rev Lett, 2018, 120(22), 227601 doi: 10.1103/PhysRevLett.120.227601
[26]
Xue F, Hu W, Lee K C, et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv Funct Mater, 2018, 0(0), 1803738 doi: 10.1002/adfm.201803738
[27]
Xue F, Zhang J, Hu W, et al. Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano, 2018, 12(5), 4976 doi: 10.1021/acsnano.8b02152
[28]
Zheng C, Yu L, Zhu L, et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci Adv, 2018, 4(7), eaar7720 doi: 10.1126/sciadv.aar7720
[29]
Wan S Y, Li Y, Li W, et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3. Adv Funct Mater, 2018, 29, 1808606 doi: 10.1002/adfm.201808606
[30]
Si M W, Gao S J, Qiu G, et all. A ferroelectric semiconductor field-effect transistor. arXiv: 1812.02933
[31]
Tao X, Gu Y. Crystalline–crystalline phase transformation in two-dimensional In2Se3 thin layers. Nano Lett, 2013, 13(8), 3501 doi: 10.1021/nl400888p
[32]
Wu D, Pak A J, Liu Y N, et al. Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes. Nano Lett, 2015, 15(12), 8136 doi: 10.1021/acs.nanolett.5b03575
[33]
Zhou J D, Zeng Q S, Lv D H, et al. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett, 2015, 15(10), 6400 doi: 10.1021/acs.nanolett.5b01590
[34]
Jacobs-Gedrim R B, Shanmugam M, Jain N, et al. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano, 2014, 8(1), 514 doi: 10.1021/nn405037s
[35]
Nilanthy B, Christopher R S, Emily F S, et al. Quantum confinement and photoresponsivity of β -In2Se3 nanosheets grown by physical vapour transport. 2D Mater, 2016, 3(2), 025030 doi: 10.1088/2053-1583/3/2/025030
[36]
Choi M S, Cheong B K, Ra C H, et al. Electrically driven reversible phase changes in layered In2Se3 crystalline film. Adv Mater, 2017, 29(42), 1703568 doi: 10.1002/adma.201703568
[37]
Lewandowska R, Bacewicz R, Filipowicz J, et al. Raman scattering in α-In2Se3 crystals. Mater Res Bull, 2001, 36(15), 2577 doi: 10.1016/S0025-5408(01)00746-2
[38]
Debbichi L, Eriksson O, Lebègue S. Two-dimensional indium selenides compounds: an ab initio study. J Phys Chem Lett, 2015, 6(15), 3098 doi: 10.1021/acs.jpclett.5b01356
[39]
Zhou S, Tao X, Gu Y. Thickness-dependent thermal conductivity of suspended two-dimensional single-crystal In2Se3 layers grown by chemical vapor deposition. J Phys Chem C, 2016, 120(9), 4753 doi: 10.1021/acs.jpcc.5b10905
[40]
Eisuke T, Kojiro O, Hiroshi I. Low voltage operation of nonvolatile metal–ferroelectric–metal–insulator–semiconductor (MFMIS) field-effect-transistors (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures. Jpn J Appl Phys, 2001, 40(4S), 2917 doi: 10.1143/JJAP.40.2917
[41]
Eisuke T, Gen F, Hiroshi I. Electrical properties of metal–ferroelectric–insulator–semiconductor (MFIS) and metal–ferroelectric–metal–insulator–semiconductor (MFMIS)-FETs using ferroelectric SrBi2Ta2O9 film and SrTa2O6/SiON buffer layer. Jpn J Appl Phys, 2000, 39(4S), 2125 doi: 10.1143/JJAP.39.2125
Fig. 1.  (Color online) Layered structures of In2Se3. (a) Three-dimensional crystal structure of layered In2Se3, with the In atoms in blue and Se atoms in red, and a quintuple layer (QL) is indicated by the black dashed square. (b) Top view of the system along the vertical direction. Each atomic layer in a QL contains only one elemental species, with the atoms arranged in one of the triangular lattices A, B or C as illustrated. (c–h) Side views of several representative structures of one QL In2Se3, among which the (c) to (e) structures are derived from the zincblende, wurtzite and fcc crystals, respectively. In (f), the interlayer spacings between the central Se layer and the two neighboring In layers are displayed. The black arrows in (f) and (g) indicate the directions of the spontaneous electric polarization (P) in the FE-ZB' and FE-WZ' structures, respectively. The FE-ZB’ and FE-WZ’ structures in (f) and (g) are identified as α phase, while the metastable structure fcc and fcc’ in (e) and (h) are identified as β phase. (Courtesy of Ref. [20])

Fig. 2.  (Color online) Ferroelectricity of α-In2Se3 thin layers. (a) The surface topography of α-In2Se3 thin layers (~20 nm) on the heavily doped Si substrate. The scale bar is 2 μm. (b) The corresponding PFM phase image in the out-of-plane direction, showing clear ferroelectric domains. (c) The phase profile of different ferroelectric domains as sketched by the red dashed line in (b). A phase contrast of 180° is observed, which indicates the antiparallel directions of out-of-plane electric polarization between the adjacent domains. The arrows indicate the directions of electric polarization. (d) PFM amplitude and (e) PFM phase hysteresis loop measured from α-In2Se3 thin layers. (f) PFM amplitude image of domain engineering in α-In2Se3 with a film thickness of 12 nm. The scale bar is 370 nm. (Courtesy of Ref. [24])

Fig. 3.  (Color online) Electrically switching the out-of-plane ferroelectric polarization and corresponding in-plane atomic configuration through dipole locking. (a) The hysteresis of remnant out-of-plane polarization of a 3-nm-thick In2Se3 crystal on conductive SrRuO3, as a function of perpendicular poling voltage. Black, red, blue curves represent the normalized piezoresponse measured with Vac = 0.5, 1, and 1.5 V, respectively. The collapse of the hysteresis loop is similar to the behavior of the conventional field-switchable ferroelectrics, but totally different from charging artifact of dielectrics. (b) Polarized domain patterned by electrically biased scanning probe and measured by PFM. The inner box corresponds to positive applied voltage (+6 V) with positive piezoresponse while the outer box to negative voltage (−6 V) with negative piezoresponse. (c) SHG intensity mapping on another trilayer In2Se3 sample before PFM reversed poling. The area enclosed by dashed line was then scanning by a negatively biased AFM tip. The color bar is in linear scale with arbitrary unit. (d) SHG mapping after the electrical reversed poling. It shows dark lines at the boundary of the patterned area resulting from destructive interference, which indicates the reversal of in-plane crystal orientation and corresponding nonlinear optical polarization after reversed electrical poling. (Courtesy of Ref. [25])

Fig. 4.  (Color online) Switchable ferroelectric diode based on α-In2Se3 thin layers. (a) Schematic and (b) optical image of the device. (c) and (d) I–V curves of the ferroelectric diode with switchable rectifying behavior. (e) I–V curves measured under high DC bias, showing clear hysteresis characteristics. The arrows indicate the voltage sweeping sequence. (f) and (g) Schematic of energy band diagrams of the graphene/In2Se3 heterostructure, illustrating the evolution of the Schottky barrier in the polarized state of the ferroelectric. The positive and negative charges on the vertical grey lines stand for the polarization charges on the top and bottom sides of the α-In2Se3 thin layer. The screening charges are visualized in the graphene/FLG electrodes. (Courtesy of Ref. [24])

Fig. 5.  (Color online) Structure and optical characterization of the 2D FeFET. (a) 3D schematic diagram of the FeFET. The FeFET is fabricated by vertically stacking graphene, hBN, and α-In2Se3 thin layers in sequence. The white arrows indicate the direction of electric polarization. The zoomed area shows the crystal structure of ferroelectric α-In2Se3. (b) The hysteretic ferroelectric loop in 2D α-In2Se3 based FeFET. The resistance follows a butterfly-like dependence on gate voltage. Inset shows the optical image and topography of the FeFET. The substrate is Si wafer with 300 nm fused SiO2 on top. The graphene, hBN, and ultrathin α-In2Se3 are indicated by black, white, and red-dashed frames, respectively. From the AFM topography, the thinnest area of ultrathin α-In2Se3 in the device is 2.6 nm. (Courtesy of Ref. [29])

[1]
de Araujo C A P, Cuchiaro J D, McMillan L D, et al. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature, 1995, 374(6523), 627 doi: 10.1038/374627a0
[2]
Choi T, Lee S, Choi Y J, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324(5923), 63 doi: 10.1126/science.1168636
[3]
Lu H, Lipatov A, Ryu S, et al. Ferroelectric tunnel junctions with graphene electrodes. Nat Commun, 2014, 5, 5518 doi: 10.1038/ncomms6518
[4]
Scott J F, Paz de Araujo C A. Ferroelectric memories. Science, 1989, 246(4936), 1400 doi: 10.1126/science.246.4936.1400
[5]
Chu M W, Szafraniak I, Scholz R, et al. Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat Mater, 2004, 3(2), 87 doi: 10.1038/nmat1057
[6]
Stengel M, Vanderbilt D, Spaldin N A. Enhancement of ferroelectricity at metal–oxide interfaces. Nat Mater, 2009, 8, 392 doi: 10.1038/nmat2429
[7]
Lu H, Liu X, Burton J D, et al. Enhancement of ferroelectric polarization stability by interface engineering. Adv Mater, 2012, 24(9), 1209 doi: 10.1002/adma.v24.9
[8]
Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422(6931), 506 doi: 10.1038/nature01501
[9]
Gao P, Zhang Z Y, Li M Q, et al. Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. Nat Commun, 2017, 8, 15549 doi: 10.1038/ncomms15549
[10]
Xi X X, Wang Z F, Zhao W W, et al. Ising pairing in superconducting NbSe2 atomic layers. Nat Phys, 2015, 12, 139 doi: 10.1038/nphys3538
[11]
Xi X X, Zhao L, Wang Z F, et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nature Nanotech, 2015, 10, 765 doi: 10.1038/nnano.2015.143
[12]
Zeng H L, Dai J F, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotech, 2012, 7, 490 doi: 10.1038/nnano.2012.95
[13]
Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729), 94 doi: 10.1038/s41586-018-0626-9
[14]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6, 183 doi: 10.1038/nmat1849
[15]
Mak K F, Lee C G, Hone J, et al. Atomically thin MoS2 : a new direct-gap semiconductor. Phys Rev Lett, 2010, 105(13), 136805 doi: 10.1103/PhysRevLett.105.136805
[16]
Zeng H L, Cui X D. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem Soc Rev, 2015, 44(9), 2629 doi: 10.1039/C4CS00265B
[17]
Belianinov A, He Q, Dziaugys A, et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett, 2015, 15(6), 3808 doi: 10.1021/acs.nanolett.5b00491
[18]
Liu F C, You L, Seyler K L, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun, 2016, 7, 12357 doi: 10.1038/ncomms12357
[19]
Chang K, Liu J W, Lin H C, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353(6296), 274 doi: 10.1126/science.aad8609
[20]
Ding W J, Zhu J B, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2–VI3 van der Waals materials. Nat Commun, 2017, 8, 14956 doi: 10.1038/ncomms14956
[21]
Zhou Y, Wu D, Zhu Y H, et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett, 2017, 17(9), 5508 doi: 10.1021/acs.nanolett.7b02198
[22]
Cui C J, Hu W J, Yan X X, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett, 2018, 18(2), 1253 doi: 10.1021/acs.nanolett.7b04852
[23]
Poh S M, Tan S J R, Wang H, et al. Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction. Nano Lett, 2018, 18(10), 6340 doi: 10.1021/acs.nanolett.8b02688
[24]
Wan S Y, Li Y, Li W, et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale, 2018, 10(31), 14885 doi: 10.1039/C8NR04422H
[25]
Xiao J, Zhu H, Wang Y, et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys Rev Lett, 2018, 120(22), 227601 doi: 10.1103/PhysRevLett.120.227601
[26]
Xue F, Hu W, Lee K C, et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv Funct Mater, 2018, 0(0), 1803738 doi: 10.1002/adfm.201803738
[27]
Xue F, Zhang J, Hu W, et al. Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano, 2018, 12(5), 4976 doi: 10.1021/acsnano.8b02152
[28]
Zheng C, Yu L, Zhu L, et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci Adv, 2018, 4(7), eaar7720 doi: 10.1126/sciadv.aar7720
[29]
Wan S Y, Li Y, Li W, et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3. Adv Funct Mater, 2018, 29, 1808606 doi: 10.1002/adfm.201808606
[30]
Si M W, Gao S J, Qiu G, et all. A ferroelectric semiconductor field-effect transistor. arXiv: 1812.02933
[31]
Tao X, Gu Y. Crystalline–crystalline phase transformation in two-dimensional In2Se3 thin layers. Nano Lett, 2013, 13(8), 3501 doi: 10.1021/nl400888p
[32]
Wu D, Pak A J, Liu Y N, et al. Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes. Nano Lett, 2015, 15(12), 8136 doi: 10.1021/acs.nanolett.5b03575
[33]
Zhou J D, Zeng Q S, Lv D H, et al. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett, 2015, 15(10), 6400 doi: 10.1021/acs.nanolett.5b01590
[34]
Jacobs-Gedrim R B, Shanmugam M, Jain N, et al. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano, 2014, 8(1), 514 doi: 10.1021/nn405037s
[35]
Nilanthy B, Christopher R S, Emily F S, et al. Quantum confinement and photoresponsivity of β -In2Se3 nanosheets grown by physical vapour transport. 2D Mater, 2016, 3(2), 025030 doi: 10.1088/2053-1583/3/2/025030
[36]
Choi M S, Cheong B K, Ra C H, et al. Electrically driven reversible phase changes in layered In2Se3 crystalline film. Adv Mater, 2017, 29(42), 1703568 doi: 10.1002/adma.201703568
[37]
Lewandowska R, Bacewicz R, Filipowicz J, et al. Raman scattering in α-In2Se3 crystals. Mater Res Bull, 2001, 36(15), 2577 doi: 10.1016/S0025-5408(01)00746-2
[38]
Debbichi L, Eriksson O, Lebègue S. Two-dimensional indium selenides compounds: an ab initio study. J Phys Chem Lett, 2015, 6(15), 3098 doi: 10.1021/acs.jpclett.5b01356
[39]
Zhou S, Tao X, Gu Y. Thickness-dependent thermal conductivity of suspended two-dimensional single-crystal In2Se3 layers grown by chemical vapor deposition. J Phys Chem C, 2016, 120(9), 4753 doi: 10.1021/acs.jpcc.5b10905
[40]
Eisuke T, Kojiro O, Hiroshi I. Low voltage operation of nonvolatile metal–ferroelectric–metal–insulator–semiconductor (MFMIS) field-effect-transistors (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures. Jpn J Appl Phys, 2001, 40(4S), 2917 doi: 10.1143/JJAP.40.2917
[41]
Eisuke T, Gen F, Hiroshi I. Electrical properties of metal–ferroelectric–insulator–semiconductor (MFIS) and metal–ferroelectric–metal–insulator–semiconductor (MFMIS)-FETs using ferroelectric SrBi2Ta2O9 film and SrTa2O6/SiON buffer layer. Jpn J Appl Phys, 2000, 39(4S), 2125 doi: 10.1143/JJAP.39.2125
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5966 Times PDF downloads: 321 Times Cited by: 0 Times

    History

    Received: 31 March 2019 Revised: 30 April 2019 Online: Accepted Manuscript: 14 May 2019Uncorrected proof: 16 May 2019Published: 05 June 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yue Li, Ming Gong, Hualing Zeng. Atomically thin α-In2Se3: an emergent two-dimensional room temperature ferroelectric semiconductor[J]. Journal of Semiconductors, 2019, 40(6): 061002. doi: 10.1088/1674-4926/40/6/061002 ****Y Li, M Gong, H L Zeng, Atomically thin α-In2Se3: an emergent two-dimensional room temperature ferroelectric semiconductor[J]. J. Semicond., 2019, 40(6): 061002. doi: 10.1088/1674-4926/40/6/061002.
      Citation:
      Yue Li, Ming Gong, Hualing Zeng. Atomically thin α-In2Se3: an emergent two-dimensional room temperature ferroelectric semiconductor[J]. Journal of Semiconductors, 2019, 40(6): 061002. doi: 10.1088/1674-4926/40/6/061002 ****
      Y Li, M Gong, H L Zeng, Atomically thin α-In2Se3: an emergent two-dimensional room temperature ferroelectric semiconductor[J]. J. Semicond., 2019, 40(6): 061002. doi: 10.1088/1674-4926/40/6/061002.

      Atomically thin α-In2Se3: an emergent two-dimensional room temperature ferroelectric semiconductor

      doi: 10.1088/1674-4926/40/6/061002
      More Information
      • Corresponding author: hlzeng@ustc.edu.cn
      • Received Date: 2019-03-31
      • Revised Date: 2019-04-30
      • Published Date: 2019-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return