Citation: |
Xiaowei Jiang. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure[J]. Journal of Semiconductors, 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006
****
X W Jiang, Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure[J]. J. Semicond., 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006.
|
Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure
DOI: 10.1088/1674-4926/40/6/062006
More Information
-
Abstract
As emerging new material, graphene has inspired great research interest. However, most of the studies focused on how to improve the absorption efficiency of graphene, but payed little attention on broadening absorption bandwidth while ensuring high absorption efficiency. In this work, we proposed a hybrid nanostructure, which not only can improve absorption efficiency but also can increase absorption bandwidth. The proposed hybrid nanostructure consists of a monolayer graphene sandwiched between three Ag gratings with different widths and a SiO2 spacer on a Ag substrate, these three gratings and substrate can excite three independent magnetic dipole resonances. In our calculations, we numerically demonstrate the proposed hybrid structure can achieve graphene absorption bandwidth of 0.311 μm in near-infrared region with absorption exceeding 30% . We also studied absorption peaks dependence on gratings widths and SiO2 spacer thickness, and explained the results using physical mechanism. Our research can provide a theoretical guidance for future device preparation.-
Keywords:
- graphene,
- absorption bandwidth,
- magnetic dipole,
- grating
-
References
[1] Zhao B, Zhao J M, Zhang Z M. Enhancement of near-infrared absorption in graphene with metal gratings. Appl Phys Lett, 2014, 105(3), 031905 doi: 10.1063/1.4890624[2] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881), 1308 doi: 10.1126/science.1156965[3] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385 doi: 10.1126/science.1157996[4] Xia F, Yan H, Avouris P. The interaction of light and graphene: basics, devices, and applications. Proce IEEE, 2013, 101(7), 1717 doi: 10.1109/JPROC.2013.2250892[5] Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector. Nano Lett, 2012, 12(6), 2773 doi: 10.1021/nl204512x[6] Lu H, Cumming B P, Gu M. Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths. Opt Lett, 2015, 40(15), 3647 doi: 10.1364/OL.40.003647[7] Zhao W, Shi K, Lu Z. Greatly enhanced ultrabroadband light absorption by monolayer graphene. Opt Lett, 2013, 38(21), 4342 doi: 10.1364/OL.38.004342[8] Xu D, Yu X, Yang L, et al. Design and photovoltaic properties of graphene/silicon solar cell. J Electron Mater, 2018, 47(9), 1 doi: 10.1007/s11664-018-6268-8[9] Xu H, Han X, Dai X, et al. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors. Adv Maters, 2018, 30(13), e1706561 doi: 10.1002/adma.201706561[10] Liu J T, Liu N H, Li J, et al. Enhanced absorption of graphene with one-dimensional photonic crystal. Appl Phys Lett, 2012, 101(5), 666 doi: 10.1063/1.4740261[11] Zhao B, Zhao J M, Zhang Z M. Resonance enhanced absorption in a graphene monolayer using deep metal gratings. J Opt Soc Am B, 2015, 32(6), 1176 doi: 10.1364/JOSAB.32.001176[12] Nulli S A, Ukhtary M S, Saito R. Significant enhancement of light absorption in undoped graphene using dielectric multilayer system. Appl Phys Lett, 2018, 112(7), 073101 doi: 10.1063/1.5012604[13] Cai Y, Zhu J, Liu Q H. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers. Appl Phys Lett, 2015, 106(4), 043105 doi: 10.1063/1.4906996[14] Liu B, Tang C, Chen J, et al. Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials. Nanoscale Res Lett, 2018, 13(1), 153 doi: 10.1186/s11671-018-2569-3[15] Pirruccio G, Martín M L, Lozano G, et al. Coherent and broadband enhanced optical absorption in graphene. Acs Nano, 2013, 7(6), 4810 doi: 10.1021/nn4012253[16] Shi X, Ge L, Wen X, et al. Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale. Opt Express, 2016, 24(23), 26357 doi: 10.1364/OE.24.026357[17] Gao F, Zhu Z, Xu W, et al. Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect. Opt Express, 2017, 25(9), 9579 doi: 10.1364/OE.25.009579[18] Agarwal S, Prajapati Y K. Broadband and polarization-insensitive helix metamaterial absorber using graphene for terahertz region. Appl Phys A, 2016, 122(6), 561 doi: 10.1007/s00339-016-0078-8[19] Chen H, Zhang X X, Wang H, et al. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11), 118101 doi: 10.7498/aps.67.20180196[20] Gao J, Sang T, Li J L, et al. Double-channel absorption enhancement of graphene using narrow groove metal grating. Acta Physica Sinica, 2018, 67(18), 184210 doi: 10.7498/aps.67.20180848[21] Liu B, Tang C J, Chen J, et al. Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials. Opt Express, 2017, 25(10), 12061 doi: 10.1364/OE.25.012061[22] Sang T, Wang R, Li J, et al. Approaching total absorption of graphene strips using a c-Si subwavelength periodic membrane. Opt Commun, 2018, 413, 255 doi: 10.1016/j.optcom.2017.12.065[23] Zhao Z, Li G, Yu F, et al. Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber. Plasmonics, 2018, 13(5), 1 doi: 10.1007/s11468-018-0748-9[24] He X, Shi W, Zhao Z Y. Graphene-supported tunable near-IR metamaterials. Opt Lett, 2015, 40(2), 178 doi: 10.1364/OL.40.000178[25] Zhang L, Tang L, Wei W, et al. Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure. Opt Express, 2016, 24(18), 20002 doi: 10.1364/OE.24.020002 -
Proportional views