Citation: |
Tomasz Dietl, Alberta Bonanni, Hideo Ohno. Families of magnetic semiconductors — an overview[J]. Journal of Semiconductors, 2019, 40(8): 080301. doi: 10.1088/1674-4926/40/8/080301
****
T Dietl, A Bonanni, H Ohno, Families of magnetic semiconductors — an overview[J]. J. Semicond., 2019, 40(8): 080301. doi: 10.1088/1674-4926/40/8/080301.
|
Families of magnetic semiconductors — an overview
doi: 10.1088/1674-4926/40/8/080301
More Information-
Abstract
The interplay of magnetic and semiconducting properties has been in the focus for more than a half of the century. In this introductory article we briefly review the key properties and functionalities of various magnetic semiconductor families, including europium chalcogenides, chromium spinels, dilute magnetic semiconductors, dilute ferromagnetic semiconductors and insulators, mentioning also sources of non-uniformities in the magnetization distribution, accounting for an apparent high Curie temperature ferromagnetism in many systems. Our survey is carried out from today's perspective of ferromagnetic and antiferromagnetic spintronics as well as of the emerging fields of magnetic topological materials and atomically thin 2D layers. -
References
[1] Methfessel S, Mattis D C. Magnetic semiconductors. Vol. 18. Springer, 1968, 1[2] Baltzer P K, Wojtowicz P J, Robbins M, et al. Exchange interactions in ferromagnetic chromium chalcogenide spinels. Phys Rev, 1966, 151, 367 doi: 10.1103/PhysRev.151.367[3] Wachter P. Europium chalcogenides: EuO, EuS, EuSe and EuTe. In: Handbook on the Physics and Chemistry of Rare Earth. Vol. 2. Edited by Gschneidner K A Jr, Eyring L. Amsterdam: North-Holland, 1979, 507[4] Kasuya T, Yanase A. Anomalous transport phenomena in Eu-chalcogenide alloys. Rev Mod Phys, 1968, 40, 684 doi: 10.1103/RevModPhys.40.684[5] Nagaev E L. Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Phys Rep, 2001, 346, 387 doi: 10.1016/S0370-1573(00)00111-3[6] Žutić I, Matos-Abiague A, Scharf B, et al. Proximitized materials. Mater Today, 2019, 22, 85 doi: 10.1016/j.mattod.2018.05.003[7] Xu G, Weng H M, Wang Z J, et al. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys Rev Lett, 2011, 107, 186806 doi: 10.1103/PhysRevLett.107.186806[8] Jungwirth J, Marti X, Wadley P, et al. Antiferromagnetic spintronics. Nat Nanotech, 2016, 11(9), 231 doi: 10.1002/chin.201621267[9] Li H, Ruan S C, Zeng Y J. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv Mater, 2019, 0, 1900065 doi: 10.1002/adma.201900065[10] Webster L, Yan J A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B, 2018, 98, 144411 doi: 10.1103/PhysRevB.98.144411[11] Haury A, Wasiela A, Arnoult A, et al. Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulationdoped CdMnTe quantum wells. Phys Rev Lett, 1997, 79, 511 doi: 10.1103/PhysRevLett.79.511[12] Huang B, Clark G, Navarro-Moratalla E, et al. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Nature, 2019, 546, 270 doi: 10.1038/nature22060[13] Gałązka R R. Semimagnetic semiconductors. Proceedings 14th International Conference on the Physics of Semiconductors, 1978, 133[14] Furdyna J K, Kossut J. Diluted magnetic semiconductors. In: Semiconductors and Semimetals. Vol. 25. New York: Academic Press, 1988[15] Dietl T. (Diluted) Magnetic semiconductors. In: Handbook of Semiconductors. Vol. 3B. Edited by Mahajan S. North Holland, Amsterdam, 1994. 1251[16] Spałek J, Lewicki A, Tarnawski Z, et al. Magnetic susceptibility of semimagnetic semiconductors: The high-temperature regime and the role of superexchange. Phys Rev B, 1986, 33, 3407 doi: 10.1103/PhysRevB.33.3407[17] Gałązka R R. II–VI compounds — Polish perspective. Phys Stat Sol B, 2006, 243, 759 doi: 10.1002/(ISSN)1521-3951[18] Andresen J C, Katzgraber H G, Oganesyan V, et al. Existence of a thermodynamic spin-glass phase in the zero-concentration limit of anisotropic dipolar systems. Phys Rev X, 2014, 4, 041016 doi: 10.1103/PhysRevX.4.041016[19] Gaj J A, Kossut J. Introduction to the physics of diluted magnetic semiconductors. Berlin: Springer, 2010[20] Król M, Mirek R, Lekenta K, et al. Spin polarized semimagnetic exciton-polariton condensate in magnetic field. Sci Rep, 2018, 8(10), 6694 doi: 10.1038/s41598-018-25018-2[21] Betthausen C, Giudici P, Iankilevitch A, et al. Fractional quantum Hall effect in a dilute magnetic semiconductor. Phys Rev B, 2014, 90, 115302 doi: 10.1103/PhysRevB.90.115302[22] Fiederling R, Keim M, Reuscher G, et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature, 1999, 402, 787 doi: 10.1038/45502[23] Leclercq B, Rigaux C, Mycielski A,et al. Critical dynamics in Cd1– xMnxTe spin glasses. Phys Rev B, 1993, 47, 6169 doi: 10.1103/PhysRevB.47.6169[24] Jaroszyński J, Wróbel J, Karczewski G, et al. Magnetoconductance noise and irreversibilities in submicron wires of spin-glass n+-Cd1– xMnxTe. Phys Rev Lett, 1998, 80, 5635 doi: 10.1103/PhysRevLett.80.5635[25] Dietl T. Spin dynamics of a confined electron interacting with magnetic or nuclear spins: A semiclassical approach. Phys Rev B, 2015, 91, 125204 doi: 10.1103/PhysRevB.91.125204[26] Dietl T. Hole states in wide band-gap diluted magnetic semiconductors and oxides. Phys Rev B, 2008, 77, 085208 doi: 10.1103/PhysRevB.77.085208[27] Pacuski W, Kossacki P, Ferrand D, et al. Observation of strong-coupling effects in a diluted magnetic semiconductor Ga1– xFexN. Phys Rev Lett, 2008, 100, 037204 doi: 10.1103/PhysRevLett.100.037204[28] Besombes L, Léger Y, Maingault L, et al. Probing the spin state of a single magnetic ion in an individual quantum dot. Phys Rev Lett, 2004, 93, 207403 doi: 10.1103/PhysRevLett.93.207403[29] Kobak J, Smoleński T, Goryca M, et al. Designing quantum dots for solotronics. Nat Commun, 2014, 5, 3191 doi: 10.1038/ncomms4191[30] Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019[31] Dietl T, Ohno H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 2014, 86, 187 doi: 10.1103/RevModPhys.86.187[32] Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951 doi: 10.1126/science.281.5379.951[33] Story T, Gałązka R R, Frankel R B, et al. Carrier-concentration-induced ferromagnetism in PbSnMnTe. Phys Rev Lett, 1986, 56(11), 777 doi: 10.1142/9789812709455_0011[34] Ferrand D, Cibert J, Bourgognon C, et al. Carrier-induced ferromagnetic interactions in p-doped Zn1– xMnxTe epilayers. J Cryst Growth, 2000, 214, 387 doi: 10.1016/S0022-0248(00)00114-7[35] Olejník K, Owen M H S, Novák V, et al. Enhanced annealing, high Curie temperature and low-voltage gating in (Ga, Mn)As: A surface oxide control study. Phys Rev B, 2008, 78, 054403 doi: 10.1103/PhysRevB.78.054403[36] Wang M, Campion R P, Rushforth A W, et al. Achieving high Curie temperature in (Ga, Mn)As. Appl Phys Lett, 2008, 93, 132103 doi: 10.1063/1.2992200[37] Chen L, Yang X, Yang H F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m[38] Fukuma Y, Asada H, Miyawaki S, et al. Carrierinduced ferromagnetism in Ge0.92Mn0.08Te epilayers with a Curie temperature up to 190 K. Appl Phys Lett, 2008, 93, 252502 doi: 10.1063/1.3052081[39] Hassan M, Springholz G, Lechner R T, et al. Molecular beam epitaxy of single phase GeMnTe with high ferromagnetic transition temperature. J Cryst Growth, 2011, 323, 363 doi: 10.1016/j.jcrysgro.2010.10.135[40] Zhao K, Chen B J, Zhao G Q, et al. Ferromagnetism at 230K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 2014, 59, 2524 doi: 10.1007/s11434-014-0398-z[41] Andrearczyk T, Jaroszyński J, Sawicki M, et al. Ferromagnetic interactions in p- and n-type II–VI diluted magnetic semiconductors. Proceedings of 25th International Conference on Physics of Semiconductors, 2000, 235[42] Kazakov A, Simion G, Lyanda-Geller Y, et al. Mesoscopic transport in electrostatically defined spin-full channels in quantum Hall ferromagnets. Phys Rev Lett, 2017, 119, 046803 doi: 10.1103/PhysRevLett.119.046803[43] Jungwirth T, Wunderlich J, Novák V, et al. Spin-dependent phenomena and device concepts explored in (Ga, Mn)As. Rev Mod Phys, 2014, 86, 855 doi: 10.1103/RevModPhys.86.855[44] Ohno Y, Young D K, Beschoten B, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature, 1999, 402, 790 doi: 10.1038/45509[45] Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408, 944 doi: 10.1038/35050040[46] Boukari H, Kossacki P, Bertolini M, et al. Light and electricfield control of ferromagnetism in magnetic quantum structures. Phys Rev Lett, 2002, 88, 207204 doi: 10.1103/PhysRevLett.88.207204[47] Chiba D, Sawicki M, Nishitani Y, et al. Magnetization vector manipulation by electricfields. Nature, 2008, 455, 515 doi: 10.1038/nature07318[48] Yamanouchi M, Chiba D, Matsukura F, et al. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature, 2004, 428, 539 doi: 10.1038/nature02441[49] Yamanouchi M, Chiba D, Matsukura F, et al. Velocity of domain-wall motion induced by electrical current in a ferromagnetic semiconductor (Ga, Mn)As. Phys Rev Lett, 2006, 96, 096601 doi: 10.1103/PhysRevLett.96.096601[50] Gould C, Rüster C, Jungwirth T, et al. Tunneling anisotropic magnetoresistance: A spin-valve like tunnel magnetoresistance using a single magnetic layer. Phys Rev Lett, 2004, 93, 117203 doi: 10.1103/PhysRevLett.93.117203[51] Wunderlich J, Jungwirth T, Kaestner B, et al. Coulomb blockade anisotropic magnetoresistance effect in a (Ga, Mn)As single-electron transistor. Phys Rev Lett, 2006, 97, 077201 doi: 10.1103/PhysRevLett.97.077201[52] Bernevig B A, Vafek O. Piezo-magnetoelectric effects in p-doped semiconductors. Phys Rev B, 2005, 72, 033203 doi: 10.1103/PhysRevB.72.033203[53] Chernyshov A, Overby M, Liu X Y, et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spinorbit magneticfield. Nat Phys, 2009, 5, 656 doi: 10.1038/nphys1362[54] Kanai S, Matsukura F, Ikeda S, et al. Spintronics: from basic research to VLSI application. AAPPS Bulletin, 2015, 25(13), 4[55] Jungwirth T, Niu Q, MacDonald A H. Anomalous Hall effect in ferromagnetic semiconductors. Phys Rev Lett, 2002, 88, 207208 doi: 10.1103/PhysRevLett.88.207208[56] Nagaosa N, Sinova J, Onoda S, et al. Anomalous Hall effect. Rev Mod Phys, 2010, 82, 1539 doi: 10.1103/RevModPhys.82.1539[57] Ke H, Wang Y Y, Xue Q K. Topological materials: quantum anomalous Hall system. Annu Rev Cond Mat Phys, 2018, 9, 3293449 doi: 10.1146/annurev-conmatphys-033117-054144[58] Tokura Y, Yasuda K, Tsukazaki A. Magnetic topological insulators. Nat Rev Phys, 2019, 110 doi: 10.1038/s42254-018-0011-5[59] Manchon A, Železné J, Miron I M, et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev Mod Phys, 2019, in press, arXiv:1801.09636[60] Stefanowicz S, Kunert G, Simserides C, et al. Phase diagram and critical behavior of a random ferromagnet Ga1– xMnxN. Phys Rev B, 2013, 88(R), 081201 doi: 10.1103/PhysRevB.88.081201[61] Bonanni A, Sawicki M, Devillers T, et al. Experimental probing of exchange interactions between localized spins in the dilute magnetic insulator (Ga, Mn)N. Phys Rev B, 2011, 84, 035206 doi: 10.1103/PhysRevB.84.035206[62] Kunert G, Dobkowska S, Li T, et al. Ga1– xMnxN epitaxial films with high magnetization. Appl Phys Lett, 2012, 101, 022413 doi: 10.1063/1.4734761[63] Korenblit I Y, Shender E F, Shklovsky B I. Percolation approach to the phase transition in the very dilute ferromagnetic alloys. Phys Lett A, 1973, 46, 275 doi: 10.1016/0375-9601(73)90219-3[64] Sztenkiel D, Foltyn M, Mazur G P, et al. Stretching magnetism with an electricfield in a nitride semiconductor. Nat Commun, 2016, 7, 13232 doi: 10.1038/ncomms13232[65] Chang C Z, Zhang J S, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340, 167 doi: 10.1126/science.1234414[66] Yu R, Zhang W, Zhang H J, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329, 61 doi: 10.1126/science.1187485[67] Fan Y B, Kou X F, Upadhyaya P, et al. Electric-field control of spin-orbit torque in a magnetically doped topological insulator. Nat Nanotechnol, 2016, 352 doi: 10.1038/nnano.2015.294[68] Bulmash D, Liu C X, Qi X L. Prediction of a Weyl semimetal in Hg1– x– yCdxMnyTe. Phys Rev B, 2014, 89, 081106 doi: 10.1103/PhysRevB.89.081106[69] Dietl T, Ohno H, Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 2001, 63, 195205 doi: 10.1103/PhysRevB.63.195205[70] Lewinert C, Bastard G. Indirect exchange interaction in extremely non-parabolic zerogap semiconductors. J Phys C, 1980, 13, 2347 doi: 10.1088/0022-3719/13/12/016[71] Vergniory M G, Otrokov M M, Thonig D, et al. Exchange interaction and its tuning in magnetic binary chalcogenides. Phys Rev B, 2014, 89, 165202 doi: 10.1103/PhysRevB.89.165202[72] Gupta S, Kanai S, Matsukura F, et al. Magnetic and transport properties of Sb2Te3 doped with high concentration of Cr. Appl Phys Express, 2017, 10, 103001 doi: 10.7567/APEX.10.103001[73] Lachman E O, Young A F, Richardella A, et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci Adv, 2015, 1, e1500740 doi: 10.1126/sciadv.1500740[74] Götz M, Fijalkowski K M, Pesel E, et al. Precision measurement of the quantized anomalous Hall resistance at zero magneticfield. Appl Phys Lett, 2018, 112, 072102 doi: 10.1063/1.5009718[75] Fox E J, Rosen I T, Yang Y F, et al. Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect. Phys Rev B, 2018, 98, 075145 doi: 10.1103/PhysRevB.98.075145[76] Pohlit M, Rößler S, Ohno Y, et al. Evidence for ferromagnetic clusters in the colossal-magnetoresistance material EuB6. Phys Rev Lett, 2018, 120, 257201 doi: 10.1103/PhysRevLett.120.257201[77] Dietl T. Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J Phys Soc Jpn, 2008, 77, 031005 doi: 10.1143/JPSJ.77.031005[78] Sawicki M, Chiba D, Korbecka A, et al. Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn)As. Nat Phys, 2010, 6, 22 doi: 10.1038/nphys1455[79] Richardella A, Roushan P, Mack S, et al. Visualizing critical correlations near the metal–insulator transition in Ga1– xMnxAs. Science, 2010, 327, 665 doi: 10.1126/science.1183640[80] Kuroda S, Nishizawa N, Takita K, et al. Origin and control of high temperature ferromagnetism in semiconductors. Nat Mater, 2007, 6, 440 doi: 10.1038/nmat1910[81] Bonanni A, Navarro-Quezada A, Li T, et al. Controlled aggregation of magnetic ions in a semiconductor: An experimental demonstration. Phys Rev Lett, 2008, 101, 135502 doi: 10.1103/PhysRevLett.101.135502[82] Bonanni A. (Nano)characterization of semiconductor materials and structures. Semicon Sci Technol, 2011, 26, 060301 doi: 10.1088/0268-1242/26/6/060301[83] Dietl T, Sato K, Fukushima T, et al. Spinodal nanodecomposition in semiconductors doped with transition metals. Rev Mod Phys, 2015, 87, 1311 doi: 10.1103/RevModPhys.87.1311[84] Sato K, Bergqvist L, Kudrnovský J, et al. First-principles theory of dilute magnetic semiconductors. Rev Mod Phys, 2010, 82, 1633 doi: 10.1103/RevModPhys.82.1633[85] Bonanni A, Dietl T. A story of high-temperature ferromagnetism in semiconductors. Rev Chem Soc, 2009, 39, 528 doi: 10.1039/B905352M[86] Birowska M, Śliwa C, Majewski J A, et al. Origin of bulk uniaxial anisotropy in zinc-blende dilute magnetic semiconductors. Phys Rev Lett, 2012, 108(16), 237203 doi: 10.1103/physrevlett.108.237203[87] Yuan Y, Hübner R, Birowska M, et al. Nematicity of correlated systems driven by anisotropic chemical phase separation. Phys Rev Mater, 2018, 2(17), 114601 doi: 10.1103/PhysRevMaterials.2.114601 -
Proportional views