REVIEWS

Magnetization dynamics and related phenomena in semiconductors with ferromagnetism

Lin Chen1, , Jianhua Zhao2, Dieter Weiss1, Christian H. Back3, 1, Fumihiro Matsukura4, 5, 6, 7 and Hideo Ohno4, 5, 6, 7, 8

+ Author Affiliations

 Corresponding author: Lin Chen, Email: lin.chen@ur.de

PDF

Turn off MathJax

Abstract: We review ferromagnetic resonance (FMR) and related phenomena in the ferromagnetic semiconductor (Ga,Mn)As and single crystalline Fe/GaAs (001) hybrid structures. In both systems, spin-orbit interaction is the key ingredient for various intriguing phenomena.

Key words: (Ga,Mn)AsFe/GaAsferromagnetic resonanceGilbert dampingelectric-field effect on magnetismspin-orbit fields



[1]
Ohno H, Shen A, Matsukura F, et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69, 363 doi: 10.1063/1.118061
[2]
Dietl T, Ohno H, Matsukura F, et al. Zener model description in ferromagnetism in zinc-blende magnetic semiconductors. Sience, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019
[3]
Diet T, Ohno H, Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 2001, 63, 195205 doi: 10.1103/PhysRevB.63.195205
[4]
Matsukura F, Ohno H. Chapter 19 Molecular beam epitaxy of III–V semiconductors in molecular beam epitaxy from research to mass production (Henini M, Ed.). Amsterdam: Elsevier, 2013
[5]
Dietl T, Ohno H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 2014, 86, 187 doi: 10.1103/RevModPhys.86.187
[6]
Jungwirth T, Wunderlich J, Novák, V, et al. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev Mod Phys, 2014, 86, 855 doi: 10.1103/RevModPhys.86.855
[7]
Schneider J, Kaufmann, Y, Wilkening W, et al. Electronic structure of neutral manganese acceptor in gallium arsenide. Phys Rev Lett, 1987, 59, 240 doi: 10.1103/PhysRevLett.59.240
[8]
Szczytko J, Teardowski J, Świątek K, et al. Mn impurity in Ga1–xMnxAs epilayers. Phys Rev B, 1999, 60, 8304 doi: 10.1103/PhysRevB.60.8304
[9]
Yu K M, Walukiewicz W, Wojtowicz T, et al. Effect of the location of Mn sites in ferromagnetic Ga1–xMnxAs on its Curie temperature. Phys Rev B, 2002, 65, 201303 doi: 10.1103/PhysRevB.65.201303
[10]
Blinowski J, Kacman P. Spin interactions of interstitial Mn ions in ferromagnetic GaMnAs. Phys Rev B, 2003, 67, 121204(R) doi: 10.1103/PhysRevB.67.121204
[11]
Wojtowicz T, Furdyna J K, Liu X, et al. Electronic effects determining the formation of ferromagnetic III1–xMnxV alloys during epitaxial growth. Physica E, 2004, 25, 171 doi: 10.1016/j.physe.2004.06.014
[12]
Edmonds K W, Bogusławski P, Wang K Y, et al. Mn interstitial diffusion in (Ga,Mn)As. Phys Rev Lett, 2004, 92, 037201 doi: 10.1103/PhysRevLett.92.037201
[13]
Souma S, Chen L, Oszwałdowski R. Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As. Sci Rep, 2016, 6, 27266 doi: 10.1038/srep27266
[14]
Fid K F, Sheu B L, Maksimov O, et al. Nanoengineered Curie temperature in laterally patterned ferromagnetic semiconductor heterostructures. Appl Phys Lett, 2005, 86, 152505 doi: 10.1063/1.1900938
[15]
Chen L, Yan X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[16]
Shen A, Ohno H, Matsukura F, et al. Epitaxy of (Ga,Mn)As, a new diluted magnetic semiconductor based on GaAs. J Cryst Growth, 1997, 175/176, 1069 doi: 10.1016/S0022-0248(96)00967-0
[17]
Jungwirth T, Niu Q, MacDonald A H. Anomalous Hall effect in ferromagnetic semiconductors. Phys Rev Lett, 2002, 88, 207208 doi: 10.1103/PhysRevLett.88.207208
[18]
Baxter D V, Ruzmetov D, Scherschligt J, et al. Anisotropic magnetoresistance in Ga1–xMnxAs. Phys Rev B, 2002, 65, 212407 doi: 10.1103/PhysRevB.65.212407
[19]
Tang H X, Kawakami R K, Awschalom D D, et al. Giant planar Hall effect in epitaxial (Ga,Mn)As devices. Phys Rev Lett, 2003, 90, 107201 doi: 10.1103/PhysRevLett.90.107201
[20]
Pappert K, Hümpfner S, Wenisch J, et al. Transport characterization of the magnetic anisotropy of (Ga,Mn)As. Appl Phys Lett, 2007, 90, 062109 doi: 10.1063/1.2437075
[21]
Yamada T, Chiba D, Matsukura F, et al. Magnetic anisotropy in (Ga,Mn)As probed by magnetotransport measurements. Phys Status Solidi C, 2006, 3, 4086 doi: 10.1002/(ISSN)1610-1642
[22]
Abolfath M, Jungwirth T, Brum J, et al. Theory of magnetic anisotropy in III1–xMnxV ferromagets. J Magn Magn Mater, 2008, 320, 1190 doi: 10.1016/j.jmmm.2007.12.019
[23]
Birowska M, Śliwa C, Majewski J A, et al. Origin of bulk uniaxial anisotropy in zinc-blende dilute magnetic semiconductors. Phys Rev Lett, 2012, 108, 237203 doi: 10.1103/PhysRevLett.108.237203
[24]
Zemen J, Kučera J, Olejník K, et al. Magnetocrystalline anisotropies in (Ga,Mn)As: Systematic theoretical study and comparison with experiment. Phys Rev B, 2009, 80, 155203 doi: 10.1103/PhysRevB.80.155203
[25]
Stefanowicz W, Śliwa C, Alekshkevych P, et al. Magnetic anisotropy of epitaxial (Ga,Mn)As on (113)A GaAs. Phys Rev B, 2010, 81, 155203 doi: 10.1103/PhysRevB.81.155203
[26]
Sawicki M, Poselkov O, Sliwa C, et al. Cubic anisotropy in (Ga,Mn)As layers: Experiment and theory. Phys Rev B, 2018, 97, 184403 doi: 10.1103/PhysRevB.97.184403
[27]
Oiwa A, Katsumoto S, Endo A, et al. Nonmetal-metal-nonmetal transition and large negative magnetoresistance in (Ga,Mn)As/GaAs. Solid State Commun, 1997, 103, 209 doi: 10.1016/S0038-1098(97)00178-6
[28]
Dietl T. Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J Phys Soc Jpn, 2008, 77, 031005 doi: 10.1143/JPSJ.77.031005
[29]
Sawicki M, Chiba D, Korbecka A. Experimental probing of the interplay between ferromagnetism and localization in (Ga,Mn)As. Nat Phys, 2009, 6, 22 doi: 10.1038/nphys1455
[30]
Chen L, Matsukura F, Ohno, H. Electric-field modulation of damping constant in a ferromagnetic semiconductor (Ga,Mn)As. Phys Rev Lett, 2015, 115, 057204 doi: 10.1103/PhysRevLett.115.057204
[31]
Chiba D, Matsukura F, Ohno H. Electric-field control of ferromagnetism in (Ga,Mn)As. Appl Phys Lett, 2006, 89, 162505 doi: 10.1063/1.2362971
[32]
Chiba D, Sawicki M, Nishitani Y, et al. Magnetization vector manipulation by electric fields. Nature, 2008, 455, 515 doi: 10.1038/nature07318
[33]
Chiba D, Werpachowska, A, Endo M, et al. Anomalous Hall effect in field-effect structures of (Ga,Mn)As. Phys Rev Lett, 2010, 104, 106601 doi: 10.1103/PhysRevLett.104.106601
[34]
Matsukura F, Tokura Y, Ohno H. Control of magnetism by electric fields. Nat Nanotechnol, 2015, 10, 209 doi: 10.1038/nnano.2015.22
[35]
Liu X, Furdyna J K. Ferromagnetic resonance in Ga1–xMnxAs dilute magnetic semiconductors. J Phys: Condens Matter, 2006, 18, R245 doi: 10.1088/0953-8984/18/13/R02
[36]
Gilbert T L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn, 2004, 40, 3443 doi: 10.1109/TMAG.2004.836740
[37]
Chen L, Matsukura F, Ohno H. Direct-current voltages in (Ga,Mn)As structures induced by ferromagnetic resonance. Nat Commun, 2013, 4, 2055 doi: 10.1038/ncomms3055
[38]
Suhl H. Ferromagnetic resonance in nickel ferrite between one and two kilomegacycles. Phys Rev, 1955, 97, 555 doi: 10.1103/PhysRev.97.555.2
[39]
Mizukami S, Ando Y, Miyazaki, T. The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM = Cu, Ta, Pd and Pt) films. Jpn J Appl Phys, 2001, 40, 580 doi: 10.1143/JJAP.40.580
[40]
Arias R, Mills D L. Extrinsic contributions to the ferromagnetic resonance response of ultrathin films. Phys Rev B, 1999, 60, 7395 doi: 10.1103/PhysRevB.60.7395
[41]
Lindner J, Barsukov, I, Raeder C, et al. Two-magnon damping in thin films in case of canted magnetization: Theory versus experiment. Phys Rev B, 2009, 80, 224421 doi: 10.1103/PhysRevB.80.224421
[42]
Okada A, Kanai S, Yamanouchi M, et al. Electric-field effects on magnetic anisotropy and damping constant in Ta/CoFeB/MgO investigated by ferromagnetic resonance. Appl Phys Lett, 2014, 105, 052415 doi: 10.1063/1.4892824
[43]
Juretschke H J. Electromagnetic theory of dc effects in ferromagnetic resonance. J Appl Phys, 1960, 31, 1401 doi: 10.1063/1.1735851
[44]
Fang D, Kurebayashi H, Wunderlich J, et al. Spin-orbit-driven ferromagnetic resonance. Nat Nanotechnol, 2011, 6, 413 doi: 10.1038/nnano.2011.68
[45]
Mizukami S, Ando Y, Miyazaki T. Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/ Cu/Pt films. Phys Rev B, 2002, 66, 104413 doi: 10.1103/PhysRevB.66.104413
[46]
Tserkovnyak Y, Brataas A, Bauer G E W. Enhanced Gilbert damping in thin ferromagnetic films. Phys Rev Lett, 2002, 88, 117601 doi: 10.1103/PhysRevLett.88.117601
[47]
Saitoh E, Ueda M, Miyajima, H, et al. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl Phys Lett, 2006, 88, 182509 doi: 10.1063/1.2199473
[48]
Chen L, Ikeda S, Matsukura F, et al. DC voltages in Py and Py/Pt under ferromagnetic resonance. Appl Phys Express, 2014, 7, 013002 doi: 10.7567/APEX.7.013002
[49]
Nakayama H, Chen L, Chang H W, et al. Inverse spin Hall effect in Pt/(Ga,Mn)As. Appl Phys Lett, 2015, 106, 222405 doi: 10.1063/1.4922197
[50]
Isogami S, Tsunoda M. Enhanced inverse spin-Hall voltage in (001) oriented Fe4N/Pt polycrystalline films without contribution of planar-Hall effect. Jpn J Appl Phys, 2016, 55, 043001 doi: 10.7567/JJAP.55.043001
[51]
Chernyshov A, Overby M, Liu X, et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat Phys, 2009, 5, 656 doi: 10.1038/nphys1362
[52]
Endo M, Matsukura F, Ohno H. Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As. Appl Phys Lett, 2010, 97, 222501 doi: 10.1063/1.3520514
[53]
Moser J, Matos-Abiague A, Schuh D, et al. Tunneling anisotropic magnetoresistance and spin-orbit coupling in Fe/GaAs/Au tunnel junctions. Phys Rev Lett, 2007, 99, 056601 doi: 10.1103/PhysRevLett.99.056601
[54]
Gmitra M, Matos-Abiague A, Draxl C, et al. Magnetic control of spin-orbit fields: A first-principles study of Fe/GaAs junctions. Phys Rev Lett, 2013, 111, 036603 doi: 10.1103/PhysRevLett.111.036603
[55]
Žutić I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications. Rev Mod Phys, 2004, 76, 323 doi: 10.1103/RevModPhys.76.323
[56]
Zhu H J, Ramsteiner M, Kostial H, et al. Room-temperature spin injection from Fe into GaAs. Phys Rev Lett, 2001, 87, 016601 doi: 10.1103/PhysRevLett.87.016601
[57]
Lou X, Adelmann C, Crooker S A, et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nat Phys, 2007, 3, 197 doi: 10.1038/nphys543
[58]
Chen L, Decker M, Kronseder M, et al. Robust spin-orbit torque and spin-galvanic effect at the Fe/GaAs(001) interface at room temperature. Nat Commun, 2016, 7, 13802 doi: 10.1038/ncomms13802
[59]
Fabian J, Matos-Abiague A, Ertler C, et al. Semiconductor spintronics. Acta Physics Slovaca, 2007, 57, 565
[60]
Sánchez J C R, Vila L, Desfonds G, et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat Commun, 2013, 4, 2944 doi: 10.1038/ncomms3944
[61]
Lesne E, Fu Y, Oyarzun S, et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat Mater, 2016, 15, 1261 doi: 10.1038/nmat4726
[62]
Chen L, Gmitra M, Vogel M, et al. Electric-field control of interfacial spin-orbit fields. Nat Elect, 2018, 1, 350 doi: 10.1038/s41928-018-0085-1
[63]
Liu H, Lim W L, Urazhdin. Control of current-induced spin-orbit effects in a ferromagnetic heterostructure by electric field. Phys Rev B, 2014, 89, 220409(R) doi: 10.1103/PhysRevB.89.220409
[64]
Hupfauer T, Matos-Abiague A, Gmitra M, et al. Emergence of spin-orbit fields in magnetotransport of quasi-two-dimensional iron on gallium arsenide. Nat Commun, 2015, 6, 7374 doi: 10.1038/ncomms8374
[65]
Buchner M, Högl P, Putz S, et al. Anisotropic polar magneto-optic Kerr effect of ultrathin Fe/GaAs (001) layers due to interfacial spin-orbit interaction. Phys Rev Lett, 2016, 117, 157202 doi: 10.1103/PhysRevLett.117.157202
[66]
Chen L, Mankovsky S, Wimmer S, et al. Emergence of anisotropic Gilbert damping in ultrathin Fe layers on GaAs(001). Nat Phys, 2018, 14, 490 doi: 10.1038/s41567-018-0053-8
Fig. 1.  (Colour online) Arrott plots at different temperatures for a 300 nm-wide Hall bar of (Ga,Mn)As. The inset shows a close-up view of the Arrott plots near the ferromagnetic transition, which confirms that TC is slightly above 200 K. (Adapted from Ref. [15])

Fig. 2.  (Colour online) Gate-voltage dependence of (a) magnetic anisotropy fields Hani and (b) Gilbert damping constant α. (c) Damping constant α (closed symbols) and ratio of the superparamagnetic-like component MSP to the total magnetic component Mtot (open symbols) as a function of resistivity ρ. Circles (triangles) are for the sample with x = 0.075 (0.068), whose ρ is changed by annealing. Squares are for the MIS structure, whose ρ is changed by applied gate voltage. (Adapted from Ref. [30])

Fig. 3.  (Colour online) (a) Ferromagnetic resonance and (b) DC voltage V spectrum obtained at temperature T = 45 K and magnetic field angle θH = 90° for (Ga,Mn)As/un-doped GaAs. Magnetic field angle θH dependence of (c) symmetric component Vsym and (d) anti-symmetric component Va-sym of the DC voltage, normalized by the microwave absorption coefficient I, which can be well fitted by the planar Hall effect and the anomalous Hall effect of (Ga,Mn)As. (Adapted from Ref. [37])

Fig. 4.  (Colour online) The magnetic-field angle θH dependence of (a) the FMR resonant field HR and (b) the linewidth ΔH for (Ga,Mn)As/p-GaAs and (Ga,Mn)As/undoped GaAs. The resonance fields for both samples are identical, while a larger linewidth is found for (Ga,Mn)As/p-GaAs, indicating the existence of spin pumping. (Adapted from Ref. [37])

Fig. 5.  (Colour online) Angular dependence of the DC voltage for (Ga,Mn)As/p-GaAs.Magnetic field angle θH dependence of (a) symmetric component Vsym and (b) anti-symmetric component Va-sym of the DC voltage, normalized by the microwave absorption coefficient I. Dotted and dashed lines in (a) show the θH dependence of the DC voltages induced by the inverse spin Hall effect VISHE/I and planar Hall effect VPHE/I, where the ratio of the magnitudes of VISHE and VPHE is adjusted to reproduce the experimental result. Solid line represents total contributions, VISHE/I + VPHE/I. Solid line in (b) shows the θH dependence of the DC voltage induced by the anomalous Hall effect VAHE normalized by I. (Adapted from Ref. [37])

Fig. 6.  (Colour online) Experimentally determined magnitude and direction of the in-plane spin-orbit fields, which are normalized by a unit current density of 1011 A/m2.

Fig. 7.  (Colour online) Polar plot of in-plane spin-orbit fields under different gate-voltages. The arrows represent direction and relative strength of heff, and the solid lines represent the spin-orbit energy splitting. (Adapted from Ref. [62])

Fig. 8.  (Colour online) Magnetic-field angle φH dependence of the damping constant α for Fe thickness of (a) 1.9 nm and (b) 1.3 nm. Isotropic damping is observed for 1.9 nm-Fe. However, for Fe thickness of 1.3 nm, a larger α along <110> is observed, and α gradually decreases until approaching $\langle {\bar 1} 10 \rangle $. The anisotropic damping shows 2-fold symmetry, which results from the anisotropic density of states at the Fe/GaAs interface, as shown by open symbols in (b). (Adapted from Ref. [66])

[1]
Ohno H, Shen A, Matsukura F, et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69, 363 doi: 10.1063/1.118061
[2]
Dietl T, Ohno H, Matsukura F, et al. Zener model description in ferromagnetism in zinc-blende magnetic semiconductors. Sience, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019
[3]
Diet T, Ohno H, Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 2001, 63, 195205 doi: 10.1103/PhysRevB.63.195205
[4]
Matsukura F, Ohno H. Chapter 19 Molecular beam epitaxy of III–V semiconductors in molecular beam epitaxy from research to mass production (Henini M, Ed.). Amsterdam: Elsevier, 2013
[5]
Dietl T, Ohno H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 2014, 86, 187 doi: 10.1103/RevModPhys.86.187
[6]
Jungwirth T, Wunderlich J, Novák, V, et al. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev Mod Phys, 2014, 86, 855 doi: 10.1103/RevModPhys.86.855
[7]
Schneider J, Kaufmann, Y, Wilkening W, et al. Electronic structure of neutral manganese acceptor in gallium arsenide. Phys Rev Lett, 1987, 59, 240 doi: 10.1103/PhysRevLett.59.240
[8]
Szczytko J, Teardowski J, Świątek K, et al. Mn impurity in Ga1–xMnxAs epilayers. Phys Rev B, 1999, 60, 8304 doi: 10.1103/PhysRevB.60.8304
[9]
Yu K M, Walukiewicz W, Wojtowicz T, et al. Effect of the location of Mn sites in ferromagnetic Ga1–xMnxAs on its Curie temperature. Phys Rev B, 2002, 65, 201303 doi: 10.1103/PhysRevB.65.201303
[10]
Blinowski J, Kacman P. Spin interactions of interstitial Mn ions in ferromagnetic GaMnAs. Phys Rev B, 2003, 67, 121204(R) doi: 10.1103/PhysRevB.67.121204
[11]
Wojtowicz T, Furdyna J K, Liu X, et al. Electronic effects determining the formation of ferromagnetic III1–xMnxV alloys during epitaxial growth. Physica E, 2004, 25, 171 doi: 10.1016/j.physe.2004.06.014
[12]
Edmonds K W, Bogusławski P, Wang K Y, et al. Mn interstitial diffusion in (Ga,Mn)As. Phys Rev Lett, 2004, 92, 037201 doi: 10.1103/PhysRevLett.92.037201
[13]
Souma S, Chen L, Oszwałdowski R. Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As. Sci Rep, 2016, 6, 27266 doi: 10.1038/srep27266
[14]
Fid K F, Sheu B L, Maksimov O, et al. Nanoengineered Curie temperature in laterally patterned ferromagnetic semiconductor heterostructures. Appl Phys Lett, 2005, 86, 152505 doi: 10.1063/1.1900938
[15]
Chen L, Yan X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[16]
Shen A, Ohno H, Matsukura F, et al. Epitaxy of (Ga,Mn)As, a new diluted magnetic semiconductor based on GaAs. J Cryst Growth, 1997, 175/176, 1069 doi: 10.1016/S0022-0248(96)00967-0
[17]
Jungwirth T, Niu Q, MacDonald A H. Anomalous Hall effect in ferromagnetic semiconductors. Phys Rev Lett, 2002, 88, 207208 doi: 10.1103/PhysRevLett.88.207208
[18]
Baxter D V, Ruzmetov D, Scherschligt J, et al. Anisotropic magnetoresistance in Ga1–xMnxAs. Phys Rev B, 2002, 65, 212407 doi: 10.1103/PhysRevB.65.212407
[19]
Tang H X, Kawakami R K, Awschalom D D, et al. Giant planar Hall effect in epitaxial (Ga,Mn)As devices. Phys Rev Lett, 2003, 90, 107201 doi: 10.1103/PhysRevLett.90.107201
[20]
Pappert K, Hümpfner S, Wenisch J, et al. Transport characterization of the magnetic anisotropy of (Ga,Mn)As. Appl Phys Lett, 2007, 90, 062109 doi: 10.1063/1.2437075
[21]
Yamada T, Chiba D, Matsukura F, et al. Magnetic anisotropy in (Ga,Mn)As probed by magnetotransport measurements. Phys Status Solidi C, 2006, 3, 4086 doi: 10.1002/(ISSN)1610-1642
[22]
Abolfath M, Jungwirth T, Brum J, et al. Theory of magnetic anisotropy in III1–xMnxV ferromagets. J Magn Magn Mater, 2008, 320, 1190 doi: 10.1016/j.jmmm.2007.12.019
[23]
Birowska M, Śliwa C, Majewski J A, et al. Origin of bulk uniaxial anisotropy in zinc-blende dilute magnetic semiconductors. Phys Rev Lett, 2012, 108, 237203 doi: 10.1103/PhysRevLett.108.237203
[24]
Zemen J, Kučera J, Olejník K, et al. Magnetocrystalline anisotropies in (Ga,Mn)As: Systematic theoretical study and comparison with experiment. Phys Rev B, 2009, 80, 155203 doi: 10.1103/PhysRevB.80.155203
[25]
Stefanowicz W, Śliwa C, Alekshkevych P, et al. Magnetic anisotropy of epitaxial (Ga,Mn)As on (113)A GaAs. Phys Rev B, 2010, 81, 155203 doi: 10.1103/PhysRevB.81.155203
[26]
Sawicki M, Poselkov O, Sliwa C, et al. Cubic anisotropy in (Ga,Mn)As layers: Experiment and theory. Phys Rev B, 2018, 97, 184403 doi: 10.1103/PhysRevB.97.184403
[27]
Oiwa A, Katsumoto S, Endo A, et al. Nonmetal-metal-nonmetal transition and large negative magnetoresistance in (Ga,Mn)As/GaAs. Solid State Commun, 1997, 103, 209 doi: 10.1016/S0038-1098(97)00178-6
[28]
Dietl T. Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J Phys Soc Jpn, 2008, 77, 031005 doi: 10.1143/JPSJ.77.031005
[29]
Sawicki M, Chiba D, Korbecka A. Experimental probing of the interplay between ferromagnetism and localization in (Ga,Mn)As. Nat Phys, 2009, 6, 22 doi: 10.1038/nphys1455
[30]
Chen L, Matsukura F, Ohno, H. Electric-field modulation of damping constant in a ferromagnetic semiconductor (Ga,Mn)As. Phys Rev Lett, 2015, 115, 057204 doi: 10.1103/PhysRevLett.115.057204
[31]
Chiba D, Matsukura F, Ohno H. Electric-field control of ferromagnetism in (Ga,Mn)As. Appl Phys Lett, 2006, 89, 162505 doi: 10.1063/1.2362971
[32]
Chiba D, Sawicki M, Nishitani Y, et al. Magnetization vector manipulation by electric fields. Nature, 2008, 455, 515 doi: 10.1038/nature07318
[33]
Chiba D, Werpachowska, A, Endo M, et al. Anomalous Hall effect in field-effect structures of (Ga,Mn)As. Phys Rev Lett, 2010, 104, 106601 doi: 10.1103/PhysRevLett.104.106601
[34]
Matsukura F, Tokura Y, Ohno H. Control of magnetism by electric fields. Nat Nanotechnol, 2015, 10, 209 doi: 10.1038/nnano.2015.22
[35]
Liu X, Furdyna J K. Ferromagnetic resonance in Ga1–xMnxAs dilute magnetic semiconductors. J Phys: Condens Matter, 2006, 18, R245 doi: 10.1088/0953-8984/18/13/R02
[36]
Gilbert T L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn, 2004, 40, 3443 doi: 10.1109/TMAG.2004.836740
[37]
Chen L, Matsukura F, Ohno H. Direct-current voltages in (Ga,Mn)As structures induced by ferromagnetic resonance. Nat Commun, 2013, 4, 2055 doi: 10.1038/ncomms3055
[38]
Suhl H. Ferromagnetic resonance in nickel ferrite between one and two kilomegacycles. Phys Rev, 1955, 97, 555 doi: 10.1103/PhysRev.97.555.2
[39]
Mizukami S, Ando Y, Miyazaki, T. The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM = Cu, Ta, Pd and Pt) films. Jpn J Appl Phys, 2001, 40, 580 doi: 10.1143/JJAP.40.580
[40]
Arias R, Mills D L. Extrinsic contributions to the ferromagnetic resonance response of ultrathin films. Phys Rev B, 1999, 60, 7395 doi: 10.1103/PhysRevB.60.7395
[41]
Lindner J, Barsukov, I, Raeder C, et al. Two-magnon damping in thin films in case of canted magnetization: Theory versus experiment. Phys Rev B, 2009, 80, 224421 doi: 10.1103/PhysRevB.80.224421
[42]
Okada A, Kanai S, Yamanouchi M, et al. Electric-field effects on magnetic anisotropy and damping constant in Ta/CoFeB/MgO investigated by ferromagnetic resonance. Appl Phys Lett, 2014, 105, 052415 doi: 10.1063/1.4892824
[43]
Juretschke H J. Electromagnetic theory of dc effects in ferromagnetic resonance. J Appl Phys, 1960, 31, 1401 doi: 10.1063/1.1735851
[44]
Fang D, Kurebayashi H, Wunderlich J, et al. Spin-orbit-driven ferromagnetic resonance. Nat Nanotechnol, 2011, 6, 413 doi: 10.1038/nnano.2011.68
[45]
Mizukami S, Ando Y, Miyazaki T. Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/ Cu/Pt films. Phys Rev B, 2002, 66, 104413 doi: 10.1103/PhysRevB.66.104413
[46]
Tserkovnyak Y, Brataas A, Bauer G E W. Enhanced Gilbert damping in thin ferromagnetic films. Phys Rev Lett, 2002, 88, 117601 doi: 10.1103/PhysRevLett.88.117601
[47]
Saitoh E, Ueda M, Miyajima, H, et al. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl Phys Lett, 2006, 88, 182509 doi: 10.1063/1.2199473
[48]
Chen L, Ikeda S, Matsukura F, et al. DC voltages in Py and Py/Pt under ferromagnetic resonance. Appl Phys Express, 2014, 7, 013002 doi: 10.7567/APEX.7.013002
[49]
Nakayama H, Chen L, Chang H W, et al. Inverse spin Hall effect in Pt/(Ga,Mn)As. Appl Phys Lett, 2015, 106, 222405 doi: 10.1063/1.4922197
[50]
Isogami S, Tsunoda M. Enhanced inverse spin-Hall voltage in (001) oriented Fe4N/Pt polycrystalline films without contribution of planar-Hall effect. Jpn J Appl Phys, 2016, 55, 043001 doi: 10.7567/JJAP.55.043001
[51]
Chernyshov A, Overby M, Liu X, et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat Phys, 2009, 5, 656 doi: 10.1038/nphys1362
[52]
Endo M, Matsukura F, Ohno H. Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As. Appl Phys Lett, 2010, 97, 222501 doi: 10.1063/1.3520514
[53]
Moser J, Matos-Abiague A, Schuh D, et al. Tunneling anisotropic magnetoresistance and spin-orbit coupling in Fe/GaAs/Au tunnel junctions. Phys Rev Lett, 2007, 99, 056601 doi: 10.1103/PhysRevLett.99.056601
[54]
Gmitra M, Matos-Abiague A, Draxl C, et al. Magnetic control of spin-orbit fields: A first-principles study of Fe/GaAs junctions. Phys Rev Lett, 2013, 111, 036603 doi: 10.1103/PhysRevLett.111.036603
[55]
Žutić I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications. Rev Mod Phys, 2004, 76, 323 doi: 10.1103/RevModPhys.76.323
[56]
Zhu H J, Ramsteiner M, Kostial H, et al. Room-temperature spin injection from Fe into GaAs. Phys Rev Lett, 2001, 87, 016601 doi: 10.1103/PhysRevLett.87.016601
[57]
Lou X, Adelmann C, Crooker S A, et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nat Phys, 2007, 3, 197 doi: 10.1038/nphys543
[58]
Chen L, Decker M, Kronseder M, et al. Robust spin-orbit torque and spin-galvanic effect at the Fe/GaAs(001) interface at room temperature. Nat Commun, 2016, 7, 13802 doi: 10.1038/ncomms13802
[59]
Fabian J, Matos-Abiague A, Ertler C, et al. Semiconductor spintronics. Acta Physics Slovaca, 2007, 57, 565
[60]
Sánchez J C R, Vila L, Desfonds G, et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat Commun, 2013, 4, 2944 doi: 10.1038/ncomms3944
[61]
Lesne E, Fu Y, Oyarzun S, et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat Mater, 2016, 15, 1261 doi: 10.1038/nmat4726
[62]
Chen L, Gmitra M, Vogel M, et al. Electric-field control of interfacial spin-orbit fields. Nat Elect, 2018, 1, 350 doi: 10.1038/s41928-018-0085-1
[63]
Liu H, Lim W L, Urazhdin. Control of current-induced spin-orbit effects in a ferromagnetic heterostructure by electric field. Phys Rev B, 2014, 89, 220409(R) doi: 10.1103/PhysRevB.89.220409
[64]
Hupfauer T, Matos-Abiague A, Gmitra M, et al. Emergence of spin-orbit fields in magnetotransport of quasi-two-dimensional iron on gallium arsenide. Nat Commun, 2015, 6, 7374 doi: 10.1038/ncomms8374
[65]
Buchner M, Högl P, Putz S, et al. Anisotropic polar magneto-optic Kerr effect of ultrathin Fe/GaAs (001) layers due to interfacial spin-orbit interaction. Phys Rev Lett, 2016, 117, 157202 doi: 10.1103/PhysRevLett.117.157202
[66]
Chen L, Mankovsky S, Wimmer S, et al. Emergence of anisotropic Gilbert damping in ultrathin Fe layers on GaAs(001). Nat Phys, 2018, 14, 490 doi: 10.1038/s41567-018-0053-8
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3951 Times PDF downloads: 162 Times Cited by: 0 Times

    History

    Received: 10 June 2019 Revised: 30 June 2019 Online: Accepted Manuscript: 05 July 2019Uncorrected proof: 10 July 2019Published: 09 August 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lin Chen, Jianhua Zhao, Dieter Weiss, Christian H. Back, Fumihiro Matsukura, Hideo Ohno. Magnetization dynamics and related phenomena in semiconductors with ferromagnetism[J]. Journal of Semiconductors, 2019, 40(8): 081502. doi: 10.1088/1674-4926/40/8/081502 ****L Chen, J H Zhao, D Weiss, C H Back, F Matsukura, H Ohno, Magnetization dynamics and related phenomena in semiconductors with ferromagnetism[J]. J. Semicond., 2019, 40(8): 081502. doi: 10.1088/1674-4926/40/8/081502.
      Citation:
      Lin Chen, Jianhua Zhao, Dieter Weiss, Christian H. Back, Fumihiro Matsukura, Hideo Ohno. Magnetization dynamics and related phenomena in semiconductors with ferromagnetism[J]. Journal of Semiconductors, 2019, 40(8): 081502. doi: 10.1088/1674-4926/40/8/081502 ****
      L Chen, J H Zhao, D Weiss, C H Back, F Matsukura, H Ohno, Magnetization dynamics and related phenomena in semiconductors with ferromagnetism[J]. J. Semicond., 2019, 40(8): 081502. doi: 10.1088/1674-4926/40/8/081502.

      Magnetization dynamics and related phenomena in semiconductors with ferromagnetism

      doi: 10.1088/1674-4926/40/8/081502
      More Information
      • Corresponding author: Email: lin.chen@ur.de
      • Received Date: 2019-06-10
      • Revised Date: 2019-06-30
      • Published Date: 2019-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return