Citation: |
Sanghoon Lee, Sunjae Chung, Hakjoon Lee, Xinyu Liu, M. Dobrowolska, J. K. Furdyna. Interlayer exchange coupling in (Ga,Mn)As ferromagnetic semiconductor multilayer systems[J]. Journal of Semiconductors, 2019, 40(8): 081503. doi: 10.1088/1674-4926/40/8/081503
****
S Lee, S Chung, H Lee, X Y Liu, M Dobrowolska, J K Furdyna, Interlayer exchange coupling in (Ga,Mn)As ferromagnetic semiconductor multilayer systems[J]. J. Semicond., 2019, 40(8): 081503. doi: 10.1088/1674-4926/40/8/081503.
|
Interlayer exchange coupling in (Ga,Mn)As ferromagnetic semiconductor multilayer systems
doi: 10.1088/1674-4926/40/8/081503
More Information-
Abstract
This paper describes interlayer exchange coupling (IEC) phenomena in ferromagnetic multilayer structures, focusing on the unique IEC features observed in ferromagnetic semiconductor (Ga,Mn)As-based systems. The dependence of IEC on the structural parameters, such as non-magnetic spacer thickness, number of magnetic layers, and carrier density in the systems has been investigated by using magnetotransport measurements. The samples in the series show both a typical anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR)-like effects indicating realization of both ferromagnetic (FM) and antiferromagnetic (AFM) IEC in (Ga,Mn)As-based multilayer structures. The results revealed that the presence of carriers in the non-magnetic spacer is an important factor to realize AFM IEC in this system. The studies further reveal that the IEC occurs over a much longer distance than predicted by current theories, strongly suggesting that the IEC in (Ga,Mn)As-based multilayers is a long-range interaction. Due to the long-range nature of IEC in the (Ga,Mn)As-based systems, the next nearest neighbor (NNN) IEC cannot be ignored and results in multi-step transitions during magnetization reversal that correspond to diverse spin configurations in the system. The strength of NNN IEC was experimentally determined by measuring minor loops that correspond to magnetization flips in specific (Ga,Mn)As layer in the multilayer system.-
Keywords:
- thin film,
- crystal,
- ferromagnetic semiconductor,
- interlayer coupling
-
References
[1] Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B, 1989, 39(7), 4828 doi: 10.1103/PhysRevB.39.4828[2] Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 1988, 61(21), 2472 doi: 10.1103/PhysRevLett.61.2472[3] Parkin S S P, Farrow R F C, Marks R F, et al. Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayers. Phys Rev Lett, 1994, 73(8), 1190 doi: 10.1103/PhysRevLett.73.1190.2[4] Bloemen P J H, van Kesteren H W, Swagten H J M, et al. Oscillatory interlayer exchange coupling in Co/Ru multilayers and bilayers. Phys Rev B, 1994, 50(18), 13505 doi: 10.1103/PhysRevB.50.13505[5] Borchers J A, Dura J A, Unguris J, et al. Observation of antiparallel magnetic order in weakly coupled Co/Cu multilayers. Phys Rev Lett, 1999, 82(13), 2796 doi: 10.1103/PhysRevLett.82.2796[6] Parkin S S P. Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. Phys Rev Lett, 1991, 67(25), 3598 doi: 10.1103/PhysRevLett.67.3598[7] Parkin S S P, More N, Roche K. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys Rev Lett, 1990, 64(19), 2304 doi: 10.1103/PhysRevLett.64.2304[8] Berger L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B, 1996, 54(13), 9353 doi: 10.1103/PhysRevB.54.9353[9] Miron I M, Garello K, Gaudin G, et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature, 2011, 476, 189 doi: 10.1038/nature10309[10] Slonczewski J C. Current-driven excitations of magnetic multilayers. J Magn Magn Mater, 1996, 159, L1 doi: 10.1016/0304-8853(96)00062-5[11] Koshihara S, Oiwa A, Hirasawa M, et al. Ferromagnetic order induced by photogenerated carriers in magnetic III–V semiconductor heterostructures of (In, Mn)As/GaSb. Phys Rev Lett, 1997, 78(24), 4617 doi: 10.1103/PhysRevLett.78.4617[12] Lee H, Choi S, Lee S, et al. Effect of light illumination on the [100] uniaxial magnetic anisotropy of (Ga,Mn)As film. Solid State Commun, 2014, 192, 27 doi: 10.1016/j.ssc.2014.04.010[13] Lee S, Shin D Y, Chung S J, et al. Tunable quaternary states in ferromagnetic semiconductor (Ga,Mn)As single layer for memory devices. Appl Phys Lett, 2007, 90(15), 152113 doi: 10.1063/1.2721144[14] Liu X, Sasaki Y, Furdyna J K. Ferromagnetic resonance in Ga1− xMn xAs effects of magnetic anisotropy. Phys Rev B, 2003, 67(20), 205204 doi: 10.1103/PhysRevB.67.205204[15] Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408(6815), 944 doi: 10.1038/35050040[16] Lee H, Lee S, Choi S, et al. Interlayer exchange coupling in MBE-grown (Ga,Mn)As-based multilayer systems. J Cryst Growth, 2017, 477, 188 doi: 10.1016/j.jcrysgro.2017.01.039[17] Bac S K, Lee H, Kee S, et al. Effects on magnetic properties of (Ga,Mn)As induced by proximity of topological insulator Bi2Se3. J Electron Mater, 2018, 47(8), 4308 doi: 10.1007/s11664-018-6238-1[18] Chang J, Bhoi S, Lee K J, et al. Effects of film thickness and annealing on the magnetic properties of (Ga,Mn)AsP ferromagnetic semiconductor. J Cryst Growth, 2019, 512, 112 doi: 10.1016/j.jcrysgro.2019.01.035[19] Yuldashev S U, Im K, Yalishev V S, et al. Effect of additional nonmagnetic acceptor doping on the resistivity peak and the Curie temperature of Ga1− xMn xAs epitaxial layers. Appl Phys Lett, 2003, 82(8), 1206 doi: 10.1063/1.1554482[20] Chung S, Lee S, Chung J H, et al. Giant magnetoresistance and long-range antiferromagnetic interlayer exchange coupling in (Ga,Mn)As/GaAs: Be multilayers. Phys Rev B, 2010, 82(5), 054420 doi: 10.1103/PhysRevB.82.054420[21] Chung S, Lee S, Yoo T, et al. Determination of interlayer exchange fields acting on individual (Ga,Mn)As layers in (Ga,Mn)As/GaAs multilayers. Jpn J Appl Phys, 2015, 54(3), 033001 doi: 10.7567/JJAP.54.033001[22] Lee H, Lee S, Choi S, et al. Antiferromagnetic interlayer exchange coupling in ferromagnetic (Ga,Mn)As/GaAs: Be multilayers. IEEE Trans Magn, 2015, 51(11), 2400604 doi: 10.1109/tmag.2015.2438294[23] Leiner J, Lee H, Yoo T, et al. Observation of antiferromagnetic interlayer exchange coupling in a Ga1− xMnxAs/GaAs: Be/Ga1− xMn xAs trilayer structure. Phys Rev B, 2010, 82(19), 195205 doi: 10.1103/PhysRevB.82.195205[24] Baxter D V, Ruzmetov D, Scherschligt J, et al. Anisotropic magnetoresistance in Ga1− xMn xAs. Phys Rev B, 2002, 65(21), 212407 doi: 10.1103/PhysRevB.65.212407[25] Wang K Y, Edmonds K W, Campion R P, et al. Anisotropic magnetoresistance and magnetic anisotropy in high-quality (Ga,Mn)As films. Phys Rev B, 2005, 72(8), 085201 doi: 10.1103/PhysRevB.72.085201[26] Shin D Y, Chung S J, Lee S, et al. Temperature dependence of magnetic anisotropy in ferromagnetic (Ga,Mn)As films: Investigation by the planar Hall effect. Phys Rev B, 2007, 76(3), 035327 doi: 10.1103/PhysRevB.76.035327[27] Grünberg P A. Exchange anisotropy, interlayer exchange coupling and GMR in research and application. Sens Actuators A, 2001, 91(1), 153 doi: 10.1016/s0924-4247(01)00513-1[28] Giddings A D, Jungwirth T, Gallagher B L. (Ga,Mn)As based superlattices and the search for antiferromagnetic interlayer coupling. Phys Rev B, 2008, 78(16), 165312 doi: 10.1103/PhysRevB.78.165312[29] Sankowski P, Kacman P. Interlayer exchange coupling in (Ga,Mn)As-based superlattices. Phys Rev B, 2005, 71(20), 201303 doi: 10.1103/PhysRevB.71.201303[30] Szałowski K, Balcerzak T. Antiferromagnetic interlayer coupling in diluted magnetic thin films with RKKY interaction. Phys Rev B, 2009, 79(21), 214430 doi: 10.1103/PhysRevB.79.214430[31] Chung J H, Chung S J, Lee S, et al. Carrier-mediated antiferromagnetic interlayer exchange coupling in diluted magnetic semiconductor multilayers Ga1− xMn xAs: GaAs: Be. Phys Rev Lett, 2008, 101(23), 237202 doi: 10.1103/PhysRevLett.101.237202[32] Chung J H, Lin J, Furdyna J K, et al. Investigation of weak interlayer exchange coupling in (Ga,Mn)As/GaAs superlattices with insulating nonmagnetic spacers. J Appl Phys, 2011, 110(1), 013912 doi: 10.1063/1.3609080[33] Kępa H, Le V K, Brown C M, et al. Probing hole-induced ferromagnetic exchange in magnetic semiconductors by inelastic neutron scattering. Phys Rev Lett, 2003, 91(8), 087205 doi: 10.1103/PhysRevLett.91.087205[34] Rhyne J J, Lin J, Furdyna J K, et al. Anomalous antiferromagnetic coupling in [ZnTe¦MnTe] superlattices. J Magn Magn Mater, 1998, 177–181, 1195 doi: 10.1016/S0304-8853(97)00741-5[35] Unguris J, Celotta R J, Pierce D T. Observation of two different oscillation periods in the exchange coupling of Fe/Cr/Fe(100). Phys Rev Lett, 1991, 67(1), 140 doi: 10.1103/PhysRevLett.67.140[36] Bruno P, Chappert C. Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Phys Rev Lett, 1991, 67(12), 1602 doi: 10.1103/PhysRevLett.67.1602[37] Bruno P, Chappert C. Ruderman-Kittel theory of oscillatory interlayer exchange coupling. Phys Rev B, 1992, 46(1), 261 doi: 10.1103/PhysRevB.46.261[38] Yafet Y. Ruderman-Kittel-Kasuya-Yosida range function of a one-dimensional free-electron gas. Phys Rev B, 1987, 36(7), 3948 doi: 10.1103/PhysRevB.36.3948[39] Chen B, Xu H, Ma C, et al. All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal. Science, 2017, 357(6347), 191 doi: 10.1126/science.aak9717[40] Chung S, Lee S, Yoo T, et al. The critical role of next-nearest-neighbor interlayer interaction in the magnetic behavior of magnetic/non-magnetic multilayers. New J Phys, 2013, 15(12), 123025 doi: 10.1088/1367-2630/15/12/123025[41] Eid K F, Stone M B, Ku K C, et al. Exchange biasing of the ferromagnetic semiconductor Ga1− xMn xAs. Appl Phys Lett, 2004, 85(9), 1556 doi: 10.1063/1.1787945[42] Yu K M, Walukiewicz W, Wojtowicz T, et al. Effect of film thickness on the incorporation of Mn interstitials in Ga1− xMn xAs. Appl Phys Lett, 2005, 86(4), 042102 doi: 10.1063/1.1855430[43] Lee H, Bac S K, Lee S, et al. Experimental determination of next-nearest-neighbor interlayer exchange coupling in ferromagnetic (Ga,Mn)As/GaAs: Be multilayers. Appl Phys Lett, 2015, 107(19), 192403 doi: 10.1063/1.4935597[44] Han J H, Lee H W. Interlayer exchange coupling between next nearest neighbor layers. Phys Rev B, 2012, 86(17), 174426 doi: 10.1103/PhysRevB.86.174426 -
Proportional views