REVIEWS

High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems

Bo Gu1, 2,

+ Author Affiliations

 Corresponding author: Bo Gu, gubo@ucas.ac.cn

PDF

Turn off MathJax

Abstract: Magnetic semiconductors have been demonstrated to work at low temperatures, but not yet at room temperature for spin electronic applications. In contrast to the p-type diluted magnetic semiconductors, n-type diluted magnetic semiconductors are few. Using a combined method of the density function theory and quantum Monte Carlo simulation, we briefly discuss the recent progress to obtain diluted magnetic semiconductors with both p- and n-type carriers by choosing host semiconductors with a narrow band gap. In addition, the recent progress on two-dimensional intrinsic magnetic semiconductors with possible room temperature ferromangetism and quantum anomalous Hall effect are also discussed.

Key words: magnetic semiconductornarrow band gaptwo dimensional systems



[1]
Maekawa S. Concepts in spin electronics. Oxford University Press, 2006
[2]
Maekawa S, Valenzuela S O, Saitoh E, et al. Spin current. Oxford University Press, 2012
[3]
Kenney D, Norman C. What don’t we know. Science, 2005, 309, 75 doi: 10.1126/science.309.5731.75
[4]
Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951 doi: 10.1126/science.281.5379.951
[5]
Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9, 965 doi: 10.1038/nmat2898
[6]
Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[7]
Masek J, Kudrnovsky J, Maca F, et al. Dilute moment n-type ferromagnetic semiconductor Li(Zn,Mn)As. Phys Rev Lett, 2007, 98, 067202 doi: 10.1103/PhysRevLett.98.067202
[8]
Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn,Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun, 2011, 2, 422 doi: 10.1038/ncomms1425
[9]
Deng Z, Zhao K, Gu B, et al. Diluted ferromagnetic semiconductor Li(Zn,Mn)P with decoupled charge and spin doping. Phys Rev B, 2013, 88, 081203 doi: 10.1103/PhysRevB.88.081203
[10]
Ding C, Man H, Qin C, et al. (La1– xBa x)(Zn1– xMn x)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. Phys Rev B, 2013, 88, 041102 doi: 10.1103/PhysRevB.88.041102
[11]
Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the 122 iron-based superconductors. Nat Commun, 2013, 4, 1442 doi: 10.1038/ncomms2447
[12]
Zhao K, Chen B J, Zhao G Q, et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 2014, 59, 2524 doi: 10.1007/s11434-014-0398-z
[13]
Glasbrenner J K, Zutic I, Mazin I I. Theory of Mn-doped II–II–V semiconductors. Phys Rev B, 2014, 90, 140403 doi: 10.1103/PhysRevB.90.140403
[14]
Suzuki H, Zhao K, Shibata G, et al. Photoemission and X-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1– xK x(Zn1– yMn y)2As2. Phys Rev B, 2015, 91, 140401 doi: 10.1103/PhysRevB.91.140401
[15]
Suzuki H, Zhao G Q, Zhao K, et al. Fermi surfaces and p-d hybridization in the diluted magnetic semiconductor Ba1– xK x- (Zn1– yMn y)2As2 studied by soft X-ray angle-resolved photoemission spectroscopy. Phys Rev B, 2015, 92, 235120 doi: 10.1103/PhysRevB.92.235120
[16]
Guo S, Man H, Ding C, et al. Ba(Zn,Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 2019, 99, 155201 doi: 10.1103/PhysRevB.99.155201
[17]
Gu B, Maekawa S. Diluted magnetic semiconductors with narrow band gaps. Phys Rev B, 2016, 94, 155202 doi: 10.1103/PhysRevB.94.155202
[18]
Gu B, Maekawa S. New p- and n-type ferromagnetic semiconductors: Cr-doped BaZn2As2. AIP Adv, 2017, 7, 055805 doi: 10.1063/1.4973208
[19]
Gu B, Bulut N, Maekawa S. Crystal structure effect on the ferromagnetic correlations in ZnO with magnetic impurities. J Appl Phys, 2008, 104, 103906 doi: 10.1063/1.3028262
[20]
Ohe J, Tomoda Y, Bulut N, et al. Combined approach of density functional theory and quantum Monte Carlo method to electron correlation in dilute magnetic semiconductors. J Phys Soc Jpn, 2009, 78, 083703 doi: 10.1143/JPSJ.78.083703
[21]
Gu B, Bulut, Ziman N T, et al. Possible d0 ferromagnetism in MgO doped with nitrogen. Phys Rev B, 2009, 79, 024407 doi: 10.1103/PhysRevB.79.024407
[22]
Ichimura M, Tanikawa K, Takahashi S, et al. Foundations of quantum mechanics in the light of new technology. Edited by S Ishioka, K Fujikawa. Singapore: World Scientific, 2006, 183
[23]
Bulut N, Tanikawa K, Takahashi S, et al. Long-range ferromagnetic correlations between Anderson impurities in a semiconductor host: Quantum Monte Carlo simulations. Phys Rev B, 2007, 76, 045220 doi: 10.1103/PhysRevB.76.045220
[24]
Tomoda Y, Bulut N, Maekawa S. Inter-impurity and impurity-host magnetic correlations in semiconductors with low-density transition-metal impurities. Physica B, 2009, 404, 1159 doi: 10.1016/j.physb.2008.11.094
[25]
Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270 doi: 10.1038/nature22391
[26]
Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265 doi: 10.1038/nature22060
[27]
Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 2018, 13, 289 doi: 10.1038/s41565-018-0063-9
[28]
O’Hara D J, Zhu T, Trout A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 2018, 18, 3125 doi: 10.1021/acs.nanolett.8b00683
[29]
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136, B864 doi: 10.1103/PhysRev.136.B864
[30]
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140, A1133 doi: 10.1103/PhysRev.140.A1133
[31]
Hirsch J E, Fye R M. Monte Carlo method for magnetic impurities in metals. Phys Rev Lett, 1986, 56, 2521 doi: 10.1103/PhysRevLett.56.2521
[32]
Gu B, Gan J Y, Bulut N, et al. Quantum renormalization of the spin Hall effect. Phys Rev Lett, 2010, 105, 086401 doi: 10.1103/PhysRevLett.105.086401
[33]
Gu B, Sugai I, Ziman T, et al. Surface-assisted spin Hall effect in Au films with Pt impurities. Phys Rev Lett, 2010, 105, 216401 doi: 10.1103/PhysRevLett.105.216401
[34]
Xu Z, Gu B, Mori M, et al. Sign change of the spin Hall effect due to electron correlation in nonmagnetic CuIr alloys. Phys Rev Lett, 2015, 114, 017202 doi: 10.1103/PhysRevLett.114.017202
[35]
Haldane F D M, Anderson P W. Simple model of multiple charge states of transition-metal impurities in semiconductors. Phys Rev B, 1976, 13, 2553 doi: 10.1103/PhysRevB.13.2553
[36]
Blaha P, Schwart K, Hadsen G K H, et al. WIEN2K, an augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna, 2001
[37]
Tran F, Blaha P. Implementation of screened hybrid functionals based on the Yukawa potential within the LAPW basis set. Phys Rev B, 2011, 83, 235118 doi: 10.1103/PhysRevB.83.235118
[38]
Shein I R, Ivanovskii A L. Elastic, electronic properties and intra-atomic bonding in orthorhombic and tetragonal polymorphs of BaZn2As2 from first-principles calculations. J Alloys Compd, 2014, 583, 100 doi: 10.1016/j.jallcom.2013.08.118
[39]
Dong X J, You J Y, Gu B, et al. Strain-induced room-temperature ferromagnetic semiconductors with large anomalous Hall conductivity in two-dimensional Cr2Ge2Se6. Phys Rev Appl, 2019, 12, 014020 doi: 10.1103/PhysRevApplied.12.014020
[40]
You J Y, Zhang Z, Gu B, et al. Two-dimensional room temperature ferromagnetic semiconductors with quantum anomalous Hall effect. arXiv: 1904.11357
[41]
Tu N T, Hai P N, Anh L D, et al. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb. Appl Phys Lett, 2016, 108, 192401 doi: 10.1063/1.4948692
[42]
Tu N T, Hai P N, Anh L D, et al. A new class of ferromagnetic semiconductors with high Curie temperatures. arXiv: 1706.00735
[43]
Kudrin A V, Danilov Y A, Lesnikov V P, et al. High-temperature intrinsic ferromagnetism in the (In,Fe)Sb semiconductor. J Appl Phys, 2017, 122, 183901 doi: 10.1063/1.5010191
[44]
Tu N T, Hai P N, Anh L D, et al. Electrical control of ferromagnetism in the n-type ferromagnetic semiconductor (In,Fe)Sb with high Curie temperature. Appl Phys Lett, 2018, 112, 122409 doi: 10.1063/1.5022828
[45]
Burch K S, Mandrus D, Park J G. Magnetism in two-dimensional van der Waals materials. Nature, 2018, 563, 47 doi: 10.1038/s41586-018-0631-z
Fig. 1.  (Color online) Schematic pictures of magnetic semiconductors with (a) wide band gaps and (b) narrow band gaps. The band gap is $ E_{\rm g} $. The top of valence band (VB) is dominated by p orbitals, and the bottom of conduction band (CB) is dominated by s orbitals. For the impurity with d orbitals, $ \epsilon_{d} $ is impurity level of d orbitals, and $ U $ is the on-site Coulomb interaction. Impurity bound state (IBS) is also developed due to the doping of impurity into the host. The density of state (DOS) as a function of energy, and the magnetic correlation $ \langle M_1^zM_2^z\rangle $ between two impurities as a function of the chemical potential $ \mu $ are depicted. (a) Due to strong mixing between the impurity and the VB, the position of the IBS $ \omega_{\rm{IBS}} $ (arrow) is close to the top of the VB. Due to weak mixing between the impurity and the CB, usually no IBS appears below the bottom of the CB[1921]. Thus, we have 0 $ \lesssim $ $ \omega_{\rm{IBS}} \ll E_{\rm g} $ for the wide band gap case. By the condition $ \mu \sim \omega_{\rm{IBS}} $, positive (FM coupling) $ \langle M_1^zM_2^z\rangle $ can develop[2224]. For p-type carriers ($ \mu\sim 0 $), ferromagnetic coupling can be obtained as the condition $ \mu $ $ \sim $ $ \omega_{\rm{IBS}} $ can be satisfied. For n-type carriers ($ \mu \sim E_{\rm g} $), no magnetic coupling is obtained between impurities because the condition $\mu \sim \omega_{\rm{IBS}}$ cannot be satisfied[1921]. (b) Case for narrow band gap $ E_{\rm g} $. By choosing suitable host semiconductors and impurities, the condition 0 $ \lesssim $ $ \omega_{\rm{IBS}} $ $ \lesssim $ $ E_{\rm g} $ can be obtained. For both p-type and n-type carriers, ferromagnetic coupling can be obtained because the condition $ \mu $ $ \sim $ $ \omega_{\rm{IBS}} $ is satisfied.

Fig. 2.  (Color online) Band structure of the ZnO host with wurtzite, zincblende, and rocksalt crystal structures. Adapted from Ref. [19].

Fig. 3.  (Color online) For Mn impurity in ZnO, hybridization parameter $ V_{\xi\alpha }({k}) $ of a Mn $ \xi $ orbital with the valence bands and the conduction bands. Adapted from Ref. [19].

Fig. 4.  (Color online) For Mn impurity in ZnO, square of the magnetic moment at the impurity site $ \langle(M^z)^2\rangle $ as a function of the chemical potential $ \mu $. The top of valence is energy zero, and the bottom of the conduction band is noted as vertical dashed lines. Adapted from Ref. [19].

Fig. 5.  (Color online) For Mn impurity in ZnO, impurity-impurity magnetic correlation function $ \langle M^z_{1}M^z_{2}\rangle $ as a functino of distance $ R $ between two impurities for the wurtzite, zincblende, and rocksalt structures. $ a $ is lattice constant. Adapted from Ref. [19].

Fig. 6.  (Color online) For N impurity in MgO, host band and hybridization. (a) MgO bands structure, where an direct band gap of 7.5 eV was obtained. Hybridization between 2$ {p} $ orbitals of N and (b) valence bands and (c) conduction bands of MgO. Adapted from Ref. [21].

Fig. 7.  (Color online) For N impurity in MgO, square of magnetic moment $ \langle(M_{\xi}^z)^2\rangle $ as a function of chemical potential $ \mu $. Adapted from Ref. [21].

Fig. 8.  (Color online) For N impurity in MgO, impurity-impurity magnetic correlation $ \langle M_{1\xi}^zM_{2\xi}^z\rangle $ as a function of distance $ R $, for the impurity level (a) $ \epsilon_{p} $ = –$ 1.5 $ eV and (b) $ \epsilon_{p} $ = –$ 0.5 $ eV. Adapted from Ref. [21].

Fig. 9.  (Color online) For Mn impurity in BaZn2As2, host band and impurity-host hybridization. (a) Energy bands off host BaZn2As2. Band gap of 0.2 eV was obtained by DFT calculations, consistent with experiment[11]. The hybridization parameter between the 3d orbitals of Mn and (b) valence bands and (c) conduction bands of BaZn2As2. Adapted from Ref. [17].

Fig. 10.  (Color online) For Mn impurity in BaZn$ _2 $As$ _2 $, chemical potential $ \mu $ dependence of (a) impurity occupation number $ \langle n_{\xi}\rangle $ of $ \xi $, and (b) magnetic correlation $ \langle M_{1\xi}^zM_{2\xi}^z\rangle $ between impurities of the first-nearest neighbor. The band gap of 0.2 eV is noted by dash lines. Adapted from Ref. [17].

Fig. 11.  (Color online) For Mn impurities in BaZn$ _2 $As$ _2 $, magnetic correlation $ \langle M_{1\xi}^zM_{2\xi}^z\rangle $ as a function of distance $ R $. (a) Chemical potential is set as $ \mu $ = –0.3 eV to model p-type case. (b) It is set as $ \mu $ = 0.15 eV for n-type case. The first, second, and third nearest neighbors of $ R $ are noted. Adapted from Ref. [17].

Fig. 12.  (Color online) Cr impurity versus Mn impurity in host BaZn$ _2 $As$ _2 $. Chemical potential $ \mu $ dependence of (a) impurity occupation number $ \langle n_{\xi}\rangle $, and (b) magnetic correlation $ \langle M_{1\xi}^zM_{2\xi}^z\rangle $ between impurities of the 1st nearest neighbor. Adapted from Ref. [18].

Fig. 13.  (Color online) For Cr impurity in BaZn$ _2 $As$ _2 $, magnetic correlation $ \langle M_{1\xi}^zM_{2\xi}^z\rangle $ as a function of the distance $ R $. (a) chemical potential is set as $ \mu $ = –0.1 eV to model p-type case. (b) It is set as $ \mu $ = 0.15 eV for n-type case. The first, second, and third nearest neighbors of $ R $ are noted. Adapted from Ref. [18].

Fig. 14.  (Color online) Crystal structure of two-dimensional Cr$ _2 $Ge$ _2 $Se$ _6 $.

Fig. 15.  (Color online) Electron band structure of two-dimensional Cr$ _2 $Ge$ _2 $Se$ _6 $, obtained by the density functional theory calculations. Adapted from Ref. [39].

Fig. 16.  (Color online) For two-dimensional Cr$ _2 $Ge$ _2 $Se$ _6 $ with different tensile strains, the normalized magnetization as a function temperature. Adapted from Ref. [39].

Fig. 17.  (Color online) Crystal structure of two-dimensional PtBr$ _3 $.

Fig. 18.  (Color online) The band structure of two-dimensional PdBr$ _3 $, where Chern number C of the nontrivial band near Fermi energy $ E_{\rm F} $ is indicated, and the band gap is $ E_{\rm g} $ = 28.1 meV. The result is obtained by the density functional theory calculation. Adapted from Ref. [40].

Fig. 19.  (Color online) For two-dimensional PtBr$ _3 $,temperature dependence of the normalized magnetic moment obtained by the Monte Carlo simulation and the density functional theory calculation. Adapted from Ref. [40].

[1]
Maekawa S. Concepts in spin electronics. Oxford University Press, 2006
[2]
Maekawa S, Valenzuela S O, Saitoh E, et al. Spin current. Oxford University Press, 2012
[3]
Kenney D, Norman C. What don’t we know. Science, 2005, 309, 75 doi: 10.1126/science.309.5731.75
[4]
Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951 doi: 10.1126/science.281.5379.951
[5]
Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9, 965 doi: 10.1038/nmat2898
[6]
Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[7]
Masek J, Kudrnovsky J, Maca F, et al. Dilute moment n-type ferromagnetic semiconductor Li(Zn,Mn)As. Phys Rev Lett, 2007, 98, 067202 doi: 10.1103/PhysRevLett.98.067202
[8]
Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn,Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun, 2011, 2, 422 doi: 10.1038/ncomms1425
[9]
Deng Z, Zhao K, Gu B, et al. Diluted ferromagnetic semiconductor Li(Zn,Mn)P with decoupled charge and spin doping. Phys Rev B, 2013, 88, 081203 doi: 10.1103/PhysRevB.88.081203
[10]
Ding C, Man H, Qin C, et al. (La1– xBa x)(Zn1– xMn x)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. Phys Rev B, 2013, 88, 041102 doi: 10.1103/PhysRevB.88.041102
[11]
Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the 122 iron-based superconductors. Nat Commun, 2013, 4, 1442 doi: 10.1038/ncomms2447
[12]
Zhao K, Chen B J, Zhao G Q, et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 2014, 59, 2524 doi: 10.1007/s11434-014-0398-z
[13]
Glasbrenner J K, Zutic I, Mazin I I. Theory of Mn-doped II–II–V semiconductors. Phys Rev B, 2014, 90, 140403 doi: 10.1103/PhysRevB.90.140403
[14]
Suzuki H, Zhao K, Shibata G, et al. Photoemission and X-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1– xK x(Zn1– yMn y)2As2. Phys Rev B, 2015, 91, 140401 doi: 10.1103/PhysRevB.91.140401
[15]
Suzuki H, Zhao G Q, Zhao K, et al. Fermi surfaces and p-d hybridization in the diluted magnetic semiconductor Ba1– xK x- (Zn1– yMn y)2As2 studied by soft X-ray angle-resolved photoemission spectroscopy. Phys Rev B, 2015, 92, 235120 doi: 10.1103/PhysRevB.92.235120
[16]
Guo S, Man H, Ding C, et al. Ba(Zn,Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 2019, 99, 155201 doi: 10.1103/PhysRevB.99.155201
[17]
Gu B, Maekawa S. Diluted magnetic semiconductors with narrow band gaps. Phys Rev B, 2016, 94, 155202 doi: 10.1103/PhysRevB.94.155202
[18]
Gu B, Maekawa S. New p- and n-type ferromagnetic semiconductors: Cr-doped BaZn2As2. AIP Adv, 2017, 7, 055805 doi: 10.1063/1.4973208
[19]
Gu B, Bulut N, Maekawa S. Crystal structure effect on the ferromagnetic correlations in ZnO with magnetic impurities. J Appl Phys, 2008, 104, 103906 doi: 10.1063/1.3028262
[20]
Ohe J, Tomoda Y, Bulut N, et al. Combined approach of density functional theory and quantum Monte Carlo method to electron correlation in dilute magnetic semiconductors. J Phys Soc Jpn, 2009, 78, 083703 doi: 10.1143/JPSJ.78.083703
[21]
Gu B, Bulut, Ziman N T, et al. Possible d0 ferromagnetism in MgO doped with nitrogen. Phys Rev B, 2009, 79, 024407 doi: 10.1103/PhysRevB.79.024407
[22]
Ichimura M, Tanikawa K, Takahashi S, et al. Foundations of quantum mechanics in the light of new technology. Edited by S Ishioka, K Fujikawa. Singapore: World Scientific, 2006, 183
[23]
Bulut N, Tanikawa K, Takahashi S, et al. Long-range ferromagnetic correlations between Anderson impurities in a semiconductor host: Quantum Monte Carlo simulations. Phys Rev B, 2007, 76, 045220 doi: 10.1103/PhysRevB.76.045220
[24]
Tomoda Y, Bulut N, Maekawa S. Inter-impurity and impurity-host magnetic correlations in semiconductors with low-density transition-metal impurities. Physica B, 2009, 404, 1159 doi: 10.1016/j.physb.2008.11.094
[25]
Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270 doi: 10.1038/nature22391
[26]
Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265 doi: 10.1038/nature22060
[27]
Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 2018, 13, 289 doi: 10.1038/s41565-018-0063-9
[28]
O’Hara D J, Zhu T, Trout A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 2018, 18, 3125 doi: 10.1021/acs.nanolett.8b00683
[29]
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136, B864 doi: 10.1103/PhysRev.136.B864
[30]
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140, A1133 doi: 10.1103/PhysRev.140.A1133
[31]
Hirsch J E, Fye R M. Monte Carlo method for magnetic impurities in metals. Phys Rev Lett, 1986, 56, 2521 doi: 10.1103/PhysRevLett.56.2521
[32]
Gu B, Gan J Y, Bulut N, et al. Quantum renormalization of the spin Hall effect. Phys Rev Lett, 2010, 105, 086401 doi: 10.1103/PhysRevLett.105.086401
[33]
Gu B, Sugai I, Ziman T, et al. Surface-assisted spin Hall effect in Au films with Pt impurities. Phys Rev Lett, 2010, 105, 216401 doi: 10.1103/PhysRevLett.105.216401
[34]
Xu Z, Gu B, Mori M, et al. Sign change of the spin Hall effect due to electron correlation in nonmagnetic CuIr alloys. Phys Rev Lett, 2015, 114, 017202 doi: 10.1103/PhysRevLett.114.017202
[35]
Haldane F D M, Anderson P W. Simple model of multiple charge states of transition-metal impurities in semiconductors. Phys Rev B, 1976, 13, 2553 doi: 10.1103/PhysRevB.13.2553
[36]
Blaha P, Schwart K, Hadsen G K H, et al. WIEN2K, an augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna, 2001
[37]
Tran F, Blaha P. Implementation of screened hybrid functionals based on the Yukawa potential within the LAPW basis set. Phys Rev B, 2011, 83, 235118 doi: 10.1103/PhysRevB.83.235118
[38]
Shein I R, Ivanovskii A L. Elastic, electronic properties and intra-atomic bonding in orthorhombic and tetragonal polymorphs of BaZn2As2 from first-principles calculations. J Alloys Compd, 2014, 583, 100 doi: 10.1016/j.jallcom.2013.08.118
[39]
Dong X J, You J Y, Gu B, et al. Strain-induced room-temperature ferromagnetic semiconductors with large anomalous Hall conductivity in two-dimensional Cr2Ge2Se6. Phys Rev Appl, 2019, 12, 014020 doi: 10.1103/PhysRevApplied.12.014020
[40]
You J Y, Zhang Z, Gu B, et al. Two-dimensional room temperature ferromagnetic semiconductors with quantum anomalous Hall effect. arXiv: 1904.11357
[41]
Tu N T, Hai P N, Anh L D, et al. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb. Appl Phys Lett, 2016, 108, 192401 doi: 10.1063/1.4948692
[42]
Tu N T, Hai P N, Anh L D, et al. A new class of ferromagnetic semiconductors with high Curie temperatures. arXiv: 1706.00735
[43]
Kudrin A V, Danilov Y A, Lesnikov V P, et al. High-temperature intrinsic ferromagnetism in the (In,Fe)Sb semiconductor. J Appl Phys, 2017, 122, 183901 doi: 10.1063/1.5010191
[44]
Tu N T, Hai P N, Anh L D, et al. Electrical control of ferromagnetism in the n-type ferromagnetic semiconductor (In,Fe)Sb with high Curie temperature. Appl Phys Lett, 2018, 112, 122409 doi: 10.1063/1.5022828
[45]
Burch K S, Mandrus D, Park J G. Magnetism in two-dimensional van der Waals materials. Nature, 2018, 563, 47 doi: 10.1038/s41586-018-0631-z
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4521 Times PDF downloads: 227 Times Cited by: 0 Times

    History

    Received: 05 June 2019 Revised: 14 June 2019 Online: Accepted Manuscript: 10 July 2019Uncorrected proof: 10 July 2019Published: 09 August 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Bo Gu. High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems[J]. Journal of Semiconductors, 2019, 40(8): 081504. doi: 10.1088/1674-4926/40/8/081504 ****B Gu, High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems[J]. J. Semicond., 2019, 40(8): 081504. doi: 10.1088/1674-4926/40/8/081504.
      Citation:
      Bo Gu. High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems[J]. Journal of Semiconductors, 2019, 40(8): 081504. doi: 10.1088/1674-4926/40/8/081504 ****
      B Gu, High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems[J]. J. Semicond., 2019, 40(8): 081504. doi: 10.1088/1674-4926/40/8/081504.

      High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems

      doi: 10.1088/1674-4926/40/8/081504
      More Information
      • Bo Gu:gubo@ucas.ac.cn
      • Corresponding author: gubo@ucas.ac.cn
      • Received Date: 2019-06-05
      • Revised Date: 2019-06-14
      • Published Date: 2019-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return