Citation: |
Ning Zhuo, Fengqi Liu, Zhanguo Wang. Quantum cascade lasers: from sketch to mainstream in the mid and far infrared[J]. Journal of Semiconductors, 2020, 41(1): 010301. doi: 10.1088/1674-4926/41/1/010301
****
N Zhuo, F Q Liu, Z G Wang, Quantum cascade lasers: from sketch to mainstream in the mid and far infrared[J]. J. Semicond., 2020, 41(1): 010301. doi: 10.1088/1674-4926/41/1/010301.
|
Quantum cascade lasers: from sketch to mainstream in the mid and far infrared
DOI: 10.1088/1674-4926/41/1/010301
More Information
-
References
[1] Kazarinov R, Suris R A. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov Phys Semicond, 1971, 5(4), 707[2] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science, 1994, 264(5158), 553 doi: 10.1126/science.264.5158.553[3] Scamarcio G, Capasso F, Sirtori C, et al. High-power infrared (8-micrometer wavelength) superlattice lasers. Science, 1997, 276(5313), 773 doi: 10.1126/science.276.5313.773[4] Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor heterostructure laser. Nature, 2002, 417(6885), 156 doi: 10.1038/417156a[5] Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-Infrared semiconductor laser at room temperature. Science, 2002, 295(5553), 301 doi: 10.1126/science.1066408[6] Rochat M, Hofstetter D, Beck M, et al. Long-wavelength 16 mm, room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition. Appl Phys Lett, 2001, 79(26), 4271 doi: 10.1063/1.1425468[7] Scalari G, Ajili L, Faist J, et al. Far-infrared (87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K. Appl Phys Lett, 2003, 82(19), 3165 doi: 10.1063/1.1571653[8] Bai Y, Bandyopadhyay N, Tsao S, et al. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl Phys Lett, 2011, 98(18), 181102 doi: 10.1063/1.3586773[9] Lyakh A, Maulini R, Tsekoun A, et al. Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency. Opt Express, 2012, 20(22), 24272 doi: 10.1364/OE.20.024272[10] Xie F, Caneau C, Leblanc H P, et al. Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm. IEEE J Quantum Electron, 2013, 19(4), 1200407 doi: 10.1109/JSTQE.2013.2240658[11] Fathololoumi S, Dupont E, Chan C E I, et al. Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling. Opt Express, 2012, 20(4), 3866 doi: 10.1364/OE.20.003866[12] Bosco L, Franckie M, Scalari G, et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl Phys Lett, 2019, 115(1), 010601 doi: 10.1063/1.5110305[13] Belkini M A, Capasso F, Belyanin A, et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat Photonics, 2007, 1(5), 288 doi: 10.1038/nphoton.2007.70[14] Lu Q Y, Bandyopadhyay N, Slivken S, et al. Continuous operation of a monolithic semiconductor terahertz source at room temperature. Appl Phys Lett, 2014, 104(22), 221105 doi: 10.1063/1.4881182[15] Hugi A, Villares G, Blaser B, et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 2012, 492(7428), 229 doi: 10.1038/nature11620[16] Lu Q, Wu D, Slivken S, et al. High efficiency quantum cascade laser frequency comb. Sci Rep, 2017, 7, 43806 doi: 10.1038/srep43806[17] Kazakov D, Piccardo M, Wang Y, et al. Self-starting harmonic frequency comb generation in a quantum cascade laser. Nat Photonics, 2017, 11(12), 789 doi: 10.1038/s41566-017-0026-y[18] Bandyopadhyay N, Bai Y, Tsao S, et al. Room temperature continuous wave operation of k ~ 3–3.2 μm quantum cascade lasers. Appl Phys Lett, 2012, 101(24), 241110 doi: 10.1063/1.4769038[19] Niu S, Liu J, Cheng F, et al. 14 μm quantum cascade lasers based on diagonal transition and nonresonant extraction. Photonics Res, 2019, 7(11), 1244 doi: 10.1364/PRJ.7.001244[20] Bahriz M, Lollia G, Baranov A N, et al. High temperature operation of far infrared (λ ≈ 20 μm) InAs/AlSb quantum cascade lasers with dielectric waveguide. Opt Express, 2015, 23(2), 1523 doi: 10.1364/OE.23.001523[21] Bellotti E, Driscoll K, Moustakas T D, et al. Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures. Appl Phys Lett, 2008, 92(10), 101112 doi: 10.1063/1.2894508[22] Wingreen N S, Stafford C A. Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser. IEEE J Quantum Electron, 1997, 33(7), 1170 doi: 10.1109/3.594880[23] Burnett B A, Williams B S. Density matrix model for polarons in a terahertz quantum dot cascade laser. Phys Rev B, 2014, 90(15), 155309 doi: 10.1103/PhysRevB.90.155309[24] Zhuo N, Zhang J, Wang F, et al. Room temperature continuous wave quantum dot cascade laser emitting at 7.2 μm. Opt Express, 2017, 25(12), 13807 doi: 10.1364/OE.25.013807 -
Proportional views