J. Semicond. > 2020, Volume 41 > Issue 1 > 010301

COMMENTS AND OPINIONS

Quantum cascade lasers: from sketch to mainstream in the mid and far infrared

Ning Zhuo, Fengqi Liu and Zhanguo Wang

+ Author Affiliations

 Corresponding author: Ning Zhuo, zhuoning@semi.ac.cn; Fengqi Liu, fqliu@semi.ac.cn; Zhanguo Wang, zgwang@semi.ac.cn

DOI: 10.1088/1674-4926/41/1/010301

PDF

Turn off MathJax



[1]
Kazarinov R, Suris R A. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov Phys Semicond, 1971, 5(4), 707
[2]
Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science, 1994, 264(5158), 553 doi: 10.1126/science.264.5158.553
[3]
Scamarcio G, Capasso F, Sirtori C, et al. High-power infrared (8-micrometer wavelength) superlattice lasers. Science, 1997, 276(5313), 773 doi: 10.1126/science.276.5313.773
[4]
Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor heterostructure laser. Nature, 2002, 417(6885), 156 doi: 10.1038/417156a
[5]
Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-Infrared semiconductor laser at room temperature. Science, 2002, 295(5553), 301 doi: 10.1126/science.1066408
[6]
Rochat M, Hofstetter D, Beck M, et al. Long-wavelength 16 mm, room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition. Appl Phys Lett, 2001, 79(26), 4271 doi: 10.1063/1.1425468
[7]
Scalari G, Ajili L, Faist J, et al. Far-infrared (87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K. Appl Phys Lett, 2003, 82(19), 3165 doi: 10.1063/1.1571653
[8]
Bai Y, Bandyopadhyay N, Tsao S, et al. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl Phys Lett, 2011, 98(18), 181102 doi: 10.1063/1.3586773
[9]
Lyakh A, Maulini R, Tsekoun A, et al. Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency. Opt Express, 2012, 20(22), 24272 doi: 10.1364/OE.20.024272
[10]
Xie F, Caneau C, Leblanc H P, et al. Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm. IEEE J Quantum Electron, 2013, 19(4), 1200407 doi: 10.1109/JSTQE.2013.2240658
[11]
Fathololoumi S, Dupont E, Chan C E I, et al. Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling. Opt Express, 2012, 20(4), 3866 doi: 10.1364/OE.20.003866
[12]
Bosco L, Franckie M, Scalari G, et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl Phys Lett, 2019, 115(1), 010601 doi: 10.1063/1.5110305
[13]
Belkini M A, Capasso F, Belyanin A, et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat Photonics, 2007, 1(5), 288 doi: 10.1038/nphoton.2007.70
[14]
Lu Q Y, Bandyopadhyay N, Slivken S, et al. Continuous operation of a monolithic semiconductor terahertz source at room temperature. Appl Phys Lett, 2014, 104(22), 221105 doi: 10.1063/1.4881182
[15]
Hugi A, Villares G, Blaser B, et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 2012, 492(7428), 229 doi: 10.1038/nature11620
[16]
Lu Q, Wu D, Slivken S, et al. High efficiency quantum cascade laser frequency comb. Sci Rep, 2017, 7, 43806 doi: 10.1038/srep43806
[17]
Kazakov D, Piccardo M, Wang Y, et al. Self-starting harmonic frequency comb generation in a quantum cascade laser. Nat Photonics, 2017, 11(12), 789 doi: 10.1038/s41566-017-0026-y
[18]
Bandyopadhyay N, Bai Y, Tsao S, et al. Room temperature continuous wave operation of k ~ 3–3.2 μm quantum cascade lasers. Appl Phys Lett, 2012, 101(24), 241110 doi: 10.1063/1.4769038
[19]
Niu S, Liu J, Cheng F, et al. 14 μm quantum cascade lasers based on diagonal transition and nonresonant extraction. Photonics Res, 2019, 7(11), 1244 doi: 10.1364/PRJ.7.001244
[20]
Bahriz M, Lollia G, Baranov A N, et al. High temperature operation of far infrared (λ ≈ 20 μm) InAs/AlSb quantum cascade lasers with dielectric waveguide. Opt Express, 2015, 23(2), 1523 doi: 10.1364/OE.23.001523
[21]
Bellotti E, Driscoll K, Moustakas T D, et al. Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures. Appl Phys Lett, 2008, 92(10), 101112 doi: 10.1063/1.2894508
[22]
Wingreen N S, Stafford C A. Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser. IEEE J Quantum Electron, 1997, 33(7), 1170 doi: 10.1109/3.594880
[23]
Burnett B A, Williams B S. Density matrix model for polarons in a terahertz quantum dot cascade laser. Phys Rev B, 2014, 90(15), 155309 doi: 10.1103/PhysRevB.90.155309
[24]
Zhuo N, Zhang J, Wang F, et al. Room temperature continuous wave quantum dot cascade laser emitting at 7.2 μm. Opt Express, 2017, 25(12), 13807 doi: 10.1364/OE.25.013807
Fig. 1.  (Color online) (a) Basic four-level system for intersubband lasers and (b) fast LO-phonon scattering process between and in subbands.

Fig. 2.  (Color online) (a) Typical mid infrared QCL structure and (b) subband diagram of gain region under applied electric field.

Fig. 3.  (Color online) Representative evolution roadmaps for (a) multi quantum wells design (Refs. [2, 5, 8]) and (b) superlattice design (Refs. [3, 6, 11]).

Fig. 4.  (Color online) Schematic of (a) a quantum dot cascade laser and (b) energy band structures of quantum wells and quantum dots-based active region.

[1]
Kazarinov R, Suris R A. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov Phys Semicond, 1971, 5(4), 707
[2]
Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science, 1994, 264(5158), 553 doi: 10.1126/science.264.5158.553
[3]
Scamarcio G, Capasso F, Sirtori C, et al. High-power infrared (8-micrometer wavelength) superlattice lasers. Science, 1997, 276(5313), 773 doi: 10.1126/science.276.5313.773
[4]
Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor heterostructure laser. Nature, 2002, 417(6885), 156 doi: 10.1038/417156a
[5]
Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-Infrared semiconductor laser at room temperature. Science, 2002, 295(5553), 301 doi: 10.1126/science.1066408
[6]
Rochat M, Hofstetter D, Beck M, et al. Long-wavelength 16 mm, room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition. Appl Phys Lett, 2001, 79(26), 4271 doi: 10.1063/1.1425468
[7]
Scalari G, Ajili L, Faist J, et al. Far-infrared (87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K. Appl Phys Lett, 2003, 82(19), 3165 doi: 10.1063/1.1571653
[8]
Bai Y, Bandyopadhyay N, Tsao S, et al. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl Phys Lett, 2011, 98(18), 181102 doi: 10.1063/1.3586773
[9]
Lyakh A, Maulini R, Tsekoun A, et al. Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency. Opt Express, 2012, 20(22), 24272 doi: 10.1364/OE.20.024272
[10]
Xie F, Caneau C, Leblanc H P, et al. Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm. IEEE J Quantum Electron, 2013, 19(4), 1200407 doi: 10.1109/JSTQE.2013.2240658
[11]
Fathololoumi S, Dupont E, Chan C E I, et al. Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling. Opt Express, 2012, 20(4), 3866 doi: 10.1364/OE.20.003866
[12]
Bosco L, Franckie M, Scalari G, et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl Phys Lett, 2019, 115(1), 010601 doi: 10.1063/1.5110305
[13]
Belkini M A, Capasso F, Belyanin A, et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat Photonics, 2007, 1(5), 288 doi: 10.1038/nphoton.2007.70
[14]
Lu Q Y, Bandyopadhyay N, Slivken S, et al. Continuous operation of a monolithic semiconductor terahertz source at room temperature. Appl Phys Lett, 2014, 104(22), 221105 doi: 10.1063/1.4881182
[15]
Hugi A, Villares G, Blaser B, et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 2012, 492(7428), 229 doi: 10.1038/nature11620
[16]
Lu Q, Wu D, Slivken S, et al. High efficiency quantum cascade laser frequency comb. Sci Rep, 2017, 7, 43806 doi: 10.1038/srep43806
[17]
Kazakov D, Piccardo M, Wang Y, et al. Self-starting harmonic frequency comb generation in a quantum cascade laser. Nat Photonics, 2017, 11(12), 789 doi: 10.1038/s41566-017-0026-y
[18]
Bandyopadhyay N, Bai Y, Tsao S, et al. Room temperature continuous wave operation of k ~ 3–3.2 μm quantum cascade lasers. Appl Phys Lett, 2012, 101(24), 241110 doi: 10.1063/1.4769038
[19]
Niu S, Liu J, Cheng F, et al. 14 μm quantum cascade lasers based on diagonal transition and nonresonant extraction. Photonics Res, 2019, 7(11), 1244 doi: 10.1364/PRJ.7.001244
[20]
Bahriz M, Lollia G, Baranov A N, et al. High temperature operation of far infrared (λ ≈ 20 μm) InAs/AlSb quantum cascade lasers with dielectric waveguide. Opt Express, 2015, 23(2), 1523 doi: 10.1364/OE.23.001523
[21]
Bellotti E, Driscoll K, Moustakas T D, et al. Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures. Appl Phys Lett, 2008, 92(10), 101112 doi: 10.1063/1.2894508
[22]
Wingreen N S, Stafford C A. Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser. IEEE J Quantum Electron, 1997, 33(7), 1170 doi: 10.1109/3.594880
[23]
Burnett B A, Williams B S. Density matrix model for polarons in a terahertz quantum dot cascade laser. Phys Rev B, 2014, 90(15), 155309 doi: 10.1103/PhysRevB.90.155309
[24]
Zhuo N, Zhang J, Wang F, et al. Room temperature continuous wave quantum dot cascade laser emitting at 7.2 μm. Opt Express, 2017, 25(12), 13807 doi: 10.1364/OE.25.013807
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3973 Times PDF downloads: 119 Times Cited by: 0 Times

    History

    Received: Revised: Online: Accepted Manuscript: 25 December 2019Uncorrected proof: 26 December 2019Published: 02 January 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ning Zhuo, Fengqi Liu, Zhanguo Wang. Quantum cascade lasers: from sketch to mainstream in the mid and far infrared[J]. Journal of Semiconductors, 2020, 41(1): 010301. doi: 10.1088/1674-4926/41/1/010301 ****N Zhuo, F Q Liu, Z G Wang, Quantum cascade lasers: from sketch to mainstream in the mid and far infrared[J]. J. Semicond., 2020, 41(1): 010301. doi: 10.1088/1674-4926/41/1/010301.
      Citation:
      Ning Zhuo, Fengqi Liu, Zhanguo Wang. Quantum cascade lasers: from sketch to mainstream in the mid and far infrared[J]. Journal of Semiconductors, 2020, 41(1): 010301. doi: 10.1088/1674-4926/41/1/010301 ****
      N Zhuo, F Q Liu, Z G Wang, Quantum cascade lasers: from sketch to mainstream in the mid and far infrared[J]. J. Semicond., 2020, 41(1): 010301. doi: 10.1088/1674-4926/41/1/010301.

      Quantum cascade lasers: from sketch to mainstream in the mid and far infrared

      DOI: 10.1088/1674-4926/41/1/010301
      More Information
      • Ning Zhuo is currently an associate researcher of Institute of Semiconductors, Chinese Academy of Sciences, China. He received the Ph.D. degree in 2013, and his current research interest includes quantum (dot) cascade lasers, InP-based antimonide lasers and mid infrared frequency combs
      • Fengqi Liu is currently a professor of Institute of Semiconductors, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, China. He focuses on the MBE technology, quantum cascade lasers, quantum cascade detectors, and quantum dot materials and devices. fqliu@semi.ac.cn
      • Zhanguo Wang, born in 1938, is a semiconductor materials physicist. He was elected as the academician of the Chinese Academy of Sciences in 1995. His current interests include low dimensional semiconductor materials and quantum devices. zgwang@semi.ac.cn
      • Corresponding author: zhuoning@semi.ac.cnfqliu@semi.ac.cnzgwang@semi.ac.cn
      • Published Date: 2020-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return