Citation: |
Jialin Sun, Chuncai Hou, Hongmei Chen, Jinchuan Zhang, Ning Zhuo, Jiqiang Ning, Changcheng Zheng, Zhanguo Wang, Fengqi Liu, Ziyang Zhang. Quantum cascade superluminescent light emitters with high power and compact structure[J]. Journal of Semiconductors, 2020, 41(1): 012301. doi: 10.1088/1674-4926/41/1/012301
****
J L Sun, C C Hou, H M Chen, J C Zhang, N Zhuo, J Q Ning, C C Zheng, Z G Wang, F Q Liu, Z Y Zhang, Quantum cascade superluminescent light emitters with high power and compact structure[J]. J. Semicond., 2020, 41(1): 012301. doi: 10.1088/1674-4926/41/1/012301.
|
Quantum cascade superluminescent light emitters with high power and compact structure
DOI: 10.1088/1674-4926/41/1/012301
More Information
-
Abstract
Quantum cascade (QC) superluminescent light emitters (SLEs) have emerged as desirable broadband mid-infrared (MIR) light sources for growing number of applications in areas like medical imaging, gas sensing and national defense. However, it is challenging to obtain a practical high-power device due to the very low efficiency of spontaneous emission in the intersubband transitions in QC structures. Herein a design of ~5 μm SLEs is demonstrated with a two-phonon resonance-based QC active structure coupled with a compact combinatorial waveguide structure which comprises a short straight part adjacent to a tilted stripe and to a J-shaped waveguide. The as-fabricated SLEs achieve a high output power of 1.8 mW, exhibiting the potential to be integrated into array devices without taking up too much chip space. These results may facilitate the realization of SLE arrays to attain larger output power and pave the pathway towards the practical applications of broadband MIR light sources.-
Keywords:
- quantum cascade,
- superluminescent diode,
- mid-wave infrared
-
References
[1] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science, 1994, 264(5158), 553 doi: 10.1126/science.264.5158.553[2] Vitiello M S, Scalari G, Williams B, et al. Quantum cascade lasers: 20 years of challenges. Opt Express, 2015, 23(4), 5167 doi: 10.1364/OE.23.005167[3] Zhang Z Y, Hogg R A, Lv X Q, et al. Self-assembled quantum-dot superluminescent light-emitting diodes. Adv Opt Photonics, 2010, 2(2), 201 doi: 10.1364/AOP.2.000201[4] Riedi S, Cappelli F, Blaser S, et al. Broadband superluminescence, 5.9 μm to 7.2 μm, of a quantum cascade gain device. Opt Express, 2015, 23(6), 7184 doi: 10.1364/OE.23.007184[5] Zia N, Viheriala J, Koivusalo E, et al. GaSb superluminescent diodes with broadband emission at 2.55 μm. Appl Phys Lett, 2018, 112(5), 051106 doi: 10.1063/1.5015974[6] Brezinski M E, Fujimoto J G. Optical coherence tomography: high-resolutionimaging in nontransparent tissue. IEEE J Sel Top Quantum Electron, 1999, 5(4), 1185 doi: 10.1109/2944.796345[7] Fujimoto J G, Pitris C, Boppart S A, et al. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2000, 2(1/2), 9 doi: 10.1038/sj.neo.7900071[8] Zhang Z Y, Wang Z G, Xu B, et al. High-performance quantum-dot superluminescent diodes. IEEE Photon Technol Lett, 2004, 16(1), 27 doi: 10.1109/LPT.2003.820481[9] Jiang Q, Zhang Z Y, Hopkinson M, et al. High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 μm. Electron Lett, 2010, 46(4), 295 doi: 10.1049/el.2010.3550[10] Chen S M, Zhou K J, Zhang Z Y, et al. Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters. IEEE J Sel Top Quant, 2013, 19(4), 1900209 doi: 10.1109/JSTQE.2012.2235175[11] Seddon A B. Mid-infrared (IR) – a hot topic: the potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Phys Status Solidi B, 2013, 250(5), 1020 doi: 10.1002/pssb.201248524[12] Lopez-Lorente A I, Mizaikoff B. Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal Bioanal Chem, 2016, 408(11), 2875 doi: 10.1007/s00216-016-9375-5[13] Wang F F, Jin P, Wu J, et al. Active multi-mode-interferometer broadband superluminescent diodes. J Semicond, 2016, 37(1), 014006 doi: 10.1088/1674-4926/37/1/014006[14] Zorin I, Su R, Prylepa A, et al. Mid-infrared Fourier-domain optical coherence tomography with a pyroelectric linear array. Opt Express, 2018, 26(25), 33428 doi: 10.1364/OE.26.033428[15] Zibik E A, Ng W H, Revin D G, et al. Broadband 6 μm < λ < 8 μm superluminescent quantum cascade light-emitting diodes. Appl Phys Lett, 2006, 88(12), 121109 doi: 10.1063/1.2188371[16] Aung N L, Yu Z, Yu Y, et al. High peak power (≥ 10 mW) quantum cascade superluminescent emitter. Appl Phys Lett, 2014, 105(22), 221111 doi: 10.1063/1.4903349[17] Zheng M C, Aung N L, Basak A, et al. High power spiral cavity quantum cascade superluminescent emitter. Opt Express, 2015, 23(3), 2713 doi: 10.1364/OE.23.002713[18] Causa F, Burrow L. Ripple-free high-power super-luminescent diode arrays. IEEE J Quantum Electron, 2007, 43(11), 1055 doi: 10.1109/JQE.2007.905291[19] Hou C C, Chen H M, Zhang J C, et al. Near-infrared and mid-infrared semiconductor broadband light emitters. Light Sci Appl, 2018, 7, 17170 doi: 10.1038/lsa.2017.170[20] Hou C C, Sun J L, Ning J Q, et al. Room-temperature quantum cascade superluminescent light emitters with wide bandwidth and high temperature stability. Opt Express, 2018, 26(11), 13730 doi: 10.1364/OE.26.013730[21] Fercher A F, Drexler W, Hitzenberger C K, et al. Optical coherence tomography—principles andapplications. Rep Prog Phys, 2003, 66, 239 doi: 10.1088/0034-4885/66/2/204 -
Proportional views