J. Semicond. > 2020, Volume 41 > Issue 3 > 032101

ARTICLES

Epitaxial graphene gas sensors on SiC substrate with high sensitivity

Cui Yu1, Qingbin Liu1, Zezhao He1, Xuedong Gao1, Enxiu Wu2, Jianchao Guo1, Chuangjie Zhou1 and Zhihong Feng1,

+ Author Affiliations

 Corresponding author: Zhihong Feng, E-mail: ga917vv@163.com

DOI: 10.1088/1674-4926/41/3/032101

PDF

Turn off MathJax

Abstract: 2D material of graphene has inspired huge interest in fabricating of solid state gas sensors. In this work, epitaxial graphene, quasi-free-standing graphene, and CVD epitaxial graphene samples on SiC substrates are used to fabricate gas sensors. Defects are introduced into graphene using SF6 plasma treatment to improve the performance of the gas sensors. The epitaxial graphene shows high sensitivity to NO2 with response of 105.1% to 4 ppm NO2 and detection limit of 1 ppb. The higher sensitivity of epitaxial graphene compared to quasi-free-standing graphene, and CVD epitaxial graphene was found to be related to the different doping types of the samples.



[1]
Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007, 6, 652 doi: 10.1038/nmat1967
[2]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6, 183 doi: 10.1038/nmat1849
[3]
Novoselov K S, Falko V I, Colombo L, et al. A roadmap for graphene. Nature, 2012, 490, 192 doi: 10.1038/nature11458
[4]
Varghese S S, Lonkar S, Singh K K, et al. Recent advances in graphene based gas sensors. Sens Actuators B, 2015, 218, 160 doi: 10.1016/j.snb.2015.04.062
[5]
Dan Y, Lu Y, Kybert N J, et al. Intrinsic response of graphene vapor sensors. Nano Lett, 2009, 9, 1472 doi: 10.1021/nl8033637
[6]
Rumyantsev S, Liu G, Shur M S, et al. Selective gas sensing with a single pristine graphene transistor. Nano Lett, 2012, 12, 2294 doi: 10.1021/nl3001293
[7]
Lee G, Yang G, Cho A, et al. Defect-engineered graphene chemical sensors with ultrahigh sensitivity. Phys Chem Chem Phys, 2016, 18, 14198 doi: 10.1039/C5CP04422G
[8]
Singh A K, Uddin M A, Tolson J T, et al. Electrically tunable molecular doping of graphene. Appl Phys Lett, 2013, 102, 043101 doi: 10.1063/1.4789509
[9]
Toda K, Furue R, Hayami S. Recent progress in applications of graphene oxide for gas sensing: A review. Anal Chim Acta, 2015, 878, 43 doi: 10.1016/j.aca.2015.02.002
[10]
Li W, Geng X, Guo Y, et al. Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano, 2011, 5, 6955 doi: 10.1021/nn201433r
[11]
Nomani M W K, Shishir R, Qazi M, et al. Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC. Sens Actuators B, 2010, 150, 301 doi: 10.1016/j.snb.2010.06.069
[12]
Pearce R, Iakimov T, Andersson M, et al. Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sens Actuators B, 2011, 155, 451 doi: 10.1016/j.snb.2010.12.046
[13]
Iezhokin I, Offermans P, Brongersma S H, et al. High sensitive quasi freestanding epitaxial graphene gas sensor on 6H-SiC. Appl Phys Lett, 2013, 103, 053514 doi: 10.1063/1.4816762
[14]
Lebedev A A, Lebedev S P, Novikov S N, et al. Supersensitive graphene-based gas sensor. Tech Phys, 2016, 61, 3, 453 doi: 10.1134/S1063784216030130
[15]
Novikov S, Lebedeva N, Satrapinski A. Graphene based sensor for environmental monitoring of NO2. J Sen, 2015, 2015, 7 doi: 10.1016/j.snb.2016.05.114
[16]
Wetchakun K, Samerjai T, Tamaekong N, et al. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens Actuators B, 2011, 160, 580 doi: 10.1016/j.snb.2011.08.032
[17]
Zhang T, Mubeen S, Myung N V, et al. Recent progress in carbon nanotube-based gas sensors. Nanotechnology, 2008, 19, 332001 doi: 10.1088/0957-4484/19/33/332001
[18]
Kumar B, Min K, Bashirzadeh M, et al. The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett, 2013, 13, 1962 doi: 10.1021/nl304734g
[19]
Chung M G, Kim D H, Lee H M, et al. Graphene-based composite materials for chemical sensor application. Sens Actuators B, 2012, 166/16, 172 doi: 10.1007/978-3-319-14406-1_3
[20]
Yu C, Li J, Liu Q B, et al. Buffer layer induced band gap and surface low energy optical phonon scattering in epitaxial graphene on SiC (0001). Appl Phys Lett, 2013, 102, 013107 doi: 10.1063/1.4773568
[21]
Yu C, Liu Q B, Li J, et al. Preparation and electrical transport properties of quasi free standing bilayer graphene on SiC (0001) substrate by H intercalation. Appl Phys Lett, 2014, 105, 183105 doi: 10.1063/1.4901163
[22]
Pankratov O, Hensel S, Bockstedte M. Electron spectrum of epitaxial graphene monolayers. Phys Rev B, 2010, 82, 121416 doi: 10.1103/PhysRevB.82.121416
[23]
Ristein J, Mammadov S, Seyller T. Origin of doping in quasi-free-standing graphene on silicon carbide. Phys Rev Lett, 2012, 108, 246104 doi: 10.1103/PhysRevLett.108.246104
[24]
Ciuk T, Strupinski W. Charge carrier concentration and offset voltage in quasi-free-standingmonolayer chemical vapor deposition graphene on SiC. Carbon, 2015, 93, 1042 doi: 10.1016/j.carbon.2016.01.093
[25]
Ciuk T, Caban P, Strupinski W. Statistics of epitaxial graphene for Hall effect sensors. Carbon, 2016, 101, 431e438 doi: 10.1016/j.carbon.2015.06.032
[26]
Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun, 2007, 143, 47 doi: 10.1016/j.ssc.2007.03.052
[27]
Choi Y R, Yoon Y G, Choi K S, et al. Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon, 2015, 91, 178 doi: 10.1016/j.carbon.2015.04.082
[28]
Portail M, Michon A, Vezian S, et al. Growth mode and electric properties of graphene and graphitic phase grown by argon-propane assisted CVD on 3C-SiC/Si and 6H-SiC. J Cryst Growth, 2012, 349, 27 doi: 10.1016/j.jcrysgro.2012.04.004
[29]
Waldmann D, Jobst J, Speck F, et al. Bottom-gated epitaxial graphene. Nat Mater, 2011, 10, 357 doi: 10.1038/nmat2988
[30]
Zhang Y H, Chen Y B, Zhou K G, et al. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology, 2009, 20, 185504 doi: 10.1088/0957-4484/20/18/185504
Fig. 1.  (Color online) Raman spectra of (a) graphene samples A and B and the SiC substrate, and (b) graphene samples C, D, and E.

Fig. 2.  (Color online) Sensor responses for (a, b) NO2 and (c, d) NH3.

Fig. 3.  (Color online) Schematic illustration of (a) the Fermi level shift and (b) resistance due to NO2 doping for n-type EG and p-type QFSEG and CVD-EG.

Table 1.   Graphene samples used for gas sensors.

Sample nameGraphene materialGrowth methodSF6 plasma treatmentCarrier typeLayer number
AEGSiC sublimationWithoutn1
BEGSiC sublimation7 sn1
CQFSEGSiC sublimation + H intercalation10 sp2
DQFSEGSiC sublimation + H intercalation7 sp2
ECVD-EGCVDWithoutp1
DownLoad: CSV

Table 2.   Sensitivity of the graphene gas sensors to NO2 gas and their detection limit (DL).

SampleOriginal resistance (Ω)NO2 concentration (ppm)DL (ppb)
0.40.8124
Sensitivity to NO2 gasA33514.0%22.8%28.2%33.5%40.8%1
B39640.0%53.9%63.5%74.6%105.1%2
C2925.0%7.2%8.3%9.3%10.7%60
D3154.0%4.7%5.0%5.4%5.8%70
E2960.9%2.5%3.4%5.3%7.4%50
DownLoad: CSV
[1]
Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007, 6, 652 doi: 10.1038/nmat1967
[2]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6, 183 doi: 10.1038/nmat1849
[3]
Novoselov K S, Falko V I, Colombo L, et al. A roadmap for graphene. Nature, 2012, 490, 192 doi: 10.1038/nature11458
[4]
Varghese S S, Lonkar S, Singh K K, et al. Recent advances in graphene based gas sensors. Sens Actuators B, 2015, 218, 160 doi: 10.1016/j.snb.2015.04.062
[5]
Dan Y, Lu Y, Kybert N J, et al. Intrinsic response of graphene vapor sensors. Nano Lett, 2009, 9, 1472 doi: 10.1021/nl8033637
[6]
Rumyantsev S, Liu G, Shur M S, et al. Selective gas sensing with a single pristine graphene transistor. Nano Lett, 2012, 12, 2294 doi: 10.1021/nl3001293
[7]
Lee G, Yang G, Cho A, et al. Defect-engineered graphene chemical sensors with ultrahigh sensitivity. Phys Chem Chem Phys, 2016, 18, 14198 doi: 10.1039/C5CP04422G
[8]
Singh A K, Uddin M A, Tolson J T, et al. Electrically tunable molecular doping of graphene. Appl Phys Lett, 2013, 102, 043101 doi: 10.1063/1.4789509
[9]
Toda K, Furue R, Hayami S. Recent progress in applications of graphene oxide for gas sensing: A review. Anal Chim Acta, 2015, 878, 43 doi: 10.1016/j.aca.2015.02.002
[10]
Li W, Geng X, Guo Y, et al. Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano, 2011, 5, 6955 doi: 10.1021/nn201433r
[11]
Nomani M W K, Shishir R, Qazi M, et al. Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC. Sens Actuators B, 2010, 150, 301 doi: 10.1016/j.snb.2010.06.069
[12]
Pearce R, Iakimov T, Andersson M, et al. Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sens Actuators B, 2011, 155, 451 doi: 10.1016/j.snb.2010.12.046
[13]
Iezhokin I, Offermans P, Brongersma S H, et al. High sensitive quasi freestanding epitaxial graphene gas sensor on 6H-SiC. Appl Phys Lett, 2013, 103, 053514 doi: 10.1063/1.4816762
[14]
Lebedev A A, Lebedev S P, Novikov S N, et al. Supersensitive graphene-based gas sensor. Tech Phys, 2016, 61, 3, 453 doi: 10.1134/S1063784216030130
[15]
Novikov S, Lebedeva N, Satrapinski A. Graphene based sensor for environmental monitoring of NO2. J Sen, 2015, 2015, 7 doi: 10.1016/j.snb.2016.05.114
[16]
Wetchakun K, Samerjai T, Tamaekong N, et al. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens Actuators B, 2011, 160, 580 doi: 10.1016/j.snb.2011.08.032
[17]
Zhang T, Mubeen S, Myung N V, et al. Recent progress in carbon nanotube-based gas sensors. Nanotechnology, 2008, 19, 332001 doi: 10.1088/0957-4484/19/33/332001
[18]
Kumar B, Min K, Bashirzadeh M, et al. The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett, 2013, 13, 1962 doi: 10.1021/nl304734g
[19]
Chung M G, Kim D H, Lee H M, et al. Graphene-based composite materials for chemical sensor application. Sens Actuators B, 2012, 166/16, 172 doi: 10.1007/978-3-319-14406-1_3
[20]
Yu C, Li J, Liu Q B, et al. Buffer layer induced band gap and surface low energy optical phonon scattering in epitaxial graphene on SiC (0001). Appl Phys Lett, 2013, 102, 013107 doi: 10.1063/1.4773568
[21]
Yu C, Liu Q B, Li J, et al. Preparation and electrical transport properties of quasi free standing bilayer graphene on SiC (0001) substrate by H intercalation. Appl Phys Lett, 2014, 105, 183105 doi: 10.1063/1.4901163
[22]
Pankratov O, Hensel S, Bockstedte M. Electron spectrum of epitaxial graphene monolayers. Phys Rev B, 2010, 82, 121416 doi: 10.1103/PhysRevB.82.121416
[23]
Ristein J, Mammadov S, Seyller T. Origin of doping in quasi-free-standing graphene on silicon carbide. Phys Rev Lett, 2012, 108, 246104 doi: 10.1103/PhysRevLett.108.246104
[24]
Ciuk T, Strupinski W. Charge carrier concentration and offset voltage in quasi-free-standingmonolayer chemical vapor deposition graphene on SiC. Carbon, 2015, 93, 1042 doi: 10.1016/j.carbon.2016.01.093
[25]
Ciuk T, Caban P, Strupinski W. Statistics of epitaxial graphene for Hall effect sensors. Carbon, 2016, 101, 431e438 doi: 10.1016/j.carbon.2015.06.032
[26]
Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun, 2007, 143, 47 doi: 10.1016/j.ssc.2007.03.052
[27]
Choi Y R, Yoon Y G, Choi K S, et al. Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon, 2015, 91, 178 doi: 10.1016/j.carbon.2015.04.082
[28]
Portail M, Michon A, Vezian S, et al. Growth mode and electric properties of graphene and graphitic phase grown by argon-propane assisted CVD on 3C-SiC/Si and 6H-SiC. J Cryst Growth, 2012, 349, 27 doi: 10.1016/j.jcrysgro.2012.04.004
[29]
Waldmann D, Jobst J, Speck F, et al. Bottom-gated epitaxial graphene. Nat Mater, 2011, 10, 357 doi: 10.1038/nmat2988
[30]
Zhang Y H, Chen Y B, Zhou K G, et al. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology, 2009, 20, 185504 doi: 10.1088/0957-4484/20/18/185504
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3568 Times PDF downloads: 65 Times Cited by: 0 Times

    History

    Received: 12 August 2019 Revised: 10 December 2019 Online: Accepted Manuscript: 14 January 2020Uncorrected proof: 17 January 2020Published: 01 March 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Cui Yu, Qingbin Liu, Zezhao He, Xuedong Gao, Enxiu Wu, Jianchao Guo, Chuangjie Zhou, Zhihong Feng. Epitaxial graphene gas sensors on SiC substrate with high sensitivity[J]. Journal of Semiconductors, 2020, 41(3): 032101. doi: 10.1088/1674-4926/41/3/032101 ****C Yu, Q B Liu, Z Z He, X D Gao, E X Wu, J C Guo, C J Zhou, Z H Feng, Epitaxial graphene gas sensors on SiC substrate with high sensitivity[J]. J. Semicond., 2020, 41(3): 032101. doi: 10.1088/1674-4926/41/3/032101.
      Citation:
      Cui Yu, Qingbin Liu, Zezhao He, Xuedong Gao, Enxiu Wu, Jianchao Guo, Chuangjie Zhou, Zhihong Feng. Epitaxial graphene gas sensors on SiC substrate with high sensitivity[J]. Journal of Semiconductors, 2020, 41(3): 032101. doi: 10.1088/1674-4926/41/3/032101 ****
      C Yu, Q B Liu, Z Z He, X D Gao, E X Wu, J C Guo, C J Zhou, Z H Feng, Epitaxial graphene gas sensors on SiC substrate with high sensitivity[J]. J. Semicond., 2020, 41(3): 032101. doi: 10.1088/1674-4926/41/3/032101.

      Epitaxial graphene gas sensors on SiC substrate with high sensitivity

      DOI: 10.1088/1674-4926/41/3/032101
      More Information
      • Corresponding author: E-mail: ga917vv@163.com
      • Received Date: 2019-08-12
      • Revised Date: 2019-12-10
      • Published Date: 2020-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return