Citation: |
Desheng Zeng, Li Zhong, Suping Liu, Xiaoyu Ma. Analysis of the time domain characteristics of tapered semiconductor lasers[J]. Journal of Semiconductors, 2020, 41(3): 032305. doi: 10.1088/1674-4926/41/3/032305
****
D S Zeng, L Zhong, S P Liu, X Y Ma, Analysis of the time domain characteristics of tapered semiconductor lasers[J]. J. Semicond., 2020, 41(3): 032305. doi: 10.1088/1674-4926/41/3/032305.
|
Analysis of the time domain characteristics of tapered semiconductor lasers
doi: 10.1088/1674-4926/41/3/032305
More Information-
Abstract
We use traveling wave coupling theory to investigate the time domain characteristics of tapered semiconductor lasers with DBR gratings. We analyze the influence of the length of second order gratings on the power and spectrum of output light, and optimizing the length of gratings, in order to reduce the mode competition effect in the device, and obtain the high power output light wave with good longitudinal mode characteristics. -
References
[1] Sun S M, Fan J, Xu L, et al. Research progress of conical semiconductor lasers. Chin Opt, 2019, 12(01), 48 doi: 10.3788/co.20191201.0048[2] Zhou X Y, Zhao S Y, Ma X L, et al. Low vertical divergence angle high brightness photonic crystal semiconductor laser. Chin J Lasers, 2017, 44(2), 0201010 doi: 10.3788/CJL201744.0201010[3] Liu Y Q, Cao Y H, Li J, et al. 5 kW fiber coupled semiconductor laser for laser processing. Opt Prec Eng, 2015, 23(05), 1279 doi: 10.3788/OPE.20152305.1279[4] Paschke K, Sumpf B, Dittmar F, et al. Nearly diffraction limited 980-nm tapered diode lasers with an output power of 7.7 W. IEEE J Sel Top Quantum Electron, 2005, 11(5), 1223 doi: 10.1109/JSTQE.2005.853840[5] Jia P, Liu X L, Chen Y Y, et al. Study of dual wavelength distributed Bragg reflection semiconductor laser with high order Bragg gratings. Chin J Lasers, 2015(8), 37 doi: 10.3788/CJL201542.0802007[6] Aho A T, Viheriälä J, M Korpijärvi V M, et al. High-power 1180-nm GaInNAs DBR laser diodes. IEEE Photonics Technol Lett, 2017, 29(23), 2023 doi: 10.1109/LPT.2017.2760038[7] Fan J, Gong C Y, Yang J J, et al. Research progress of distributed prague reflector semiconductor lasers. Progr Laser Optoelectron, 2019, 56(06), 34 doi: 10.3788/LOP56.060003[8] Müller A, Fricke J, Bugge F, et al. DBR tapered diode laser with 12.7 W output power and nearly diffraction-limited, narrowband emission at 1030 nm. Appl Phys B, 2016, 122(4), 87 doi: 10.1007/s00340-016-6360-9[9] Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers. J Appl Phys, 1972, 43(5), 2327 doi: 10.1063/1.1661499[10] Dente G C, Tilton M L. Modeling multiple-longitudinal-mode dynamics in semiconductor lasers. IEEE J Quantum Electron, 1998, 34(2), 325 doi: 10.1109/3.658726[11] Hasler K H, Wenzel H, Klehr A, et al. Simulation of the generation of high-power pulses in the GHz range with three-section DBR lasers. IEE Proceedings-Optoelectronics, 2002, 149(4), 152 doi: 10.1049/ip-opt:20020505[12] Radziunas M. Modeling and simulations of broad-area edge-emitting semiconductor devices. Intl J High Perform Comput Appl, 2018, 32(4), 512 doi: 10.1177/1094342016677086[13] Vahala K, Yariv A. Semiclassical theory of noise in semiconductor lasers-Part I. IEEE J Quantum Electron, 1983, 19(6), 1096 doi: 10.1109/JQE.1983.1071986[14] Vahala K, A Yariv A. Semiclassical theory of noise in semiconductor lasers-Part II. IEEE J Quantum Electron, 1983, 19(6), 1102 doi: 10.1109/JQE.1983.1071984[15] Zhang L M, Yu S F, Nowell M C, et al. Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model. IEEE J Quantum Electron, 1994, 30(6), 1389 doi: 10.1109/3.299461[16] Dente G C, Tilton M L, Bossert D J, et al. Time-dependent modeling of the MFA-MOPA. In: Laser Diodes and Applications II. International Society for Optics and Photonics, 1996, 2682: 48[17] De Melo A M, Petermann K. On the amplified spontaneous emission noise modeling of semiconductor optical amplifiers. Opt Commun, 2008, 281(18), 4598 doi: 10.1016/j.optcom.2008.06.039[18] Marcuse D. Computer simulation of laser photon fluctuations: Theory of single-cavity laser. IEEE J Quantum Electron, 1984, 20(10), 1139 doi: 10.1109/JQE.1984.1072276[19] Borruel L, Odriozola H, Tijero J M G, et al. Design strategies to increase the brightness of gain guided tapered lasers. Opt Quantum Electron, 2008, 40(2–4), 175 doi: 10.1007/s11082-008-9187-8[20] Spreemann M, Lichtner M, Radziunas M, et al. Measurement and simulation of distributed-feedback tapered master-oscillator power amplifiers. IEEE J Quantum Electron, 2009, 45(6), 609 doi: 10.1109/JQE.2009.2013115[21] Qiao C, Su R G, Li X, et al. Design and technology of 980 nm high power DBR semiconductor laser. Chin Laser, 2019, 46(7), 0701002[22] Wang W X, Lu Y X. Analysis of sampling grating characteristics of distributed feedback semiconductor lasers. Laser J, 2018, 39(10), 57 -
Proportional views