NEWS AND VIEWS

A close step towards industrialized application of solar water splitting

Jun Liu1, 2, Zhijie Wang1, 2, and Yong Lei3,

+ Author Affiliations

 Corresponding author: Z Wang, wangzj@semi.ac.cn; Y Lei, yong.lei@tu-ilmenau.de

PDF

Turn off MathJax



[1]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37 doi: 10.1038/238037a0
[2]
An X, Li T, Wen B, et al. New insights into defect-mediated heterostructures for photoelectrochemical water splitting. Adv Energy Mater, 2016, 6, 1502268 doi: 10.1002/aenm.201502268
[3]
Wang X D, Xu Y F, Rao H S, et al. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energ Environ Sci, 2016, 9, 1468 doi: 10.1039/C5EE03801D
[4]
Wu B, Liu D, Mubeen S, et al. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J Am Chem Soc, 2016, 138, 1114 doi: 10.1021/jacs.5b11341
[5]
Zhang L, Ye X, Boloor M, et al. Significantly enhanced photocurrent for water oxidation in monolithic Mo:BiVO4/SnO2/Si by thermally increasing the minority carrier diffusion length. Energ Environ Sci, 2016, 9, 2044 doi: 10.1039/C6EE00036C
[6]
Luo J, Steier L, Son M K, et al. Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett, 2016, 16, 1848 doi: 10.1021/acs.nanolett.5b04929
[7]
Domen K, Naito S, Soma M, et al. Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. J Chem Soc Chem Commun, 1980, 12, 543 doi: 10.1039/c39800000543
[8]
Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414, 625 doi: 10.1038/414625a
[9]
Maeda K, Takata T, Hara M, et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc, 2005, 127, 8286 doi: 10.1021/ja0518777
[10]
Liu J, Liu Y, Liu N, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015, 347, 970 doi: 10.1126/science.aaa3145
[11]
Takata T, Jiang J, Sakata Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature, 2020, 581, 411 doi: 10.1038/s41586-020-2278-9
[12]
Maeda K, Domen K. Photocatalytic water eplitting: Recent progress and future challenges. J Phys Chem Lett, 2010, 1, 2655 doi: 10.1021/jz1007966
[13]
Wang Z, Inoue Y, Hisatomi T, et al. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat Catal, 2018, 1, 756 doi: 10.1038/s41929-018-0134-1
[14]
Wang Q, Nakabayashi M, Hisatomi T, et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat Mater, 2019, 18, 827 doi: 10.1038/s41563-019-0399-z
Fig. 1.  Photocatalytic water-splitting activities. (a) Time course of H2 and O2 evolution on SrTiO3:Al loaded with various cocatalysts during photoirradiation. Left, loaded with Rh (0.1 wt%)/Cr2O3 (0.05 wt%) by two-step photodeposition. Middle, loaded with Rh (0.1 wt%)/Cr2O3 (0.05 wt%)/CoOOH (0.05 wt%) by three-step photodeposition. Right, loaded with Rh (0.1 wt%)-Cr (0.1 wt%) oxide by co-impregnation. (b) Ultraviolet-visible diffuse reflectance spectrum of bare SrTiO3:Al (black solid line) and wavelength dependence of external quantum efficiency (EQE) during water splitting on Rh (0.1 wt%)/Cr2O3 (0.05 wt%)/CoOOH (0.05 wt%)-loaded SrTiO3:Al (red symbols).

Fig. 2.  Transmission electron microscopy. (a) Selected-area electron diffraction pattern obtained from SrTiO3:Al loaded with Rh (0.1 wt%)/Cr2O3 (0.05 wt%)/CoOOH (0.05 wt%). (b) Corresponding transmission electron microscopy image of a particle. (c) Particle morphology and crystal orientation.

Fig. 3.  Simulations of photocarrier distributions in SrTiO3:Al particles. (a) Mapping of conduction-band energy, Ec. (b) Density of electrons (e-), n. (c) Density of holes (h+), p. (d) Energy band diagram. (e) Electron and hole densities as functions of position (x′, y′) with work function difference ΔWel = 0.2 eV. (f) Effect of ΔWel on electron-to-hole-density ratio at the {100} and {110} facets.

[1]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37 doi: 10.1038/238037a0
[2]
An X, Li T, Wen B, et al. New insights into defect-mediated heterostructures for photoelectrochemical water splitting. Adv Energy Mater, 2016, 6, 1502268 doi: 10.1002/aenm.201502268
[3]
Wang X D, Xu Y F, Rao H S, et al. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energ Environ Sci, 2016, 9, 1468 doi: 10.1039/C5EE03801D
[4]
Wu B, Liu D, Mubeen S, et al. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J Am Chem Soc, 2016, 138, 1114 doi: 10.1021/jacs.5b11341
[5]
Zhang L, Ye X, Boloor M, et al. Significantly enhanced photocurrent for water oxidation in monolithic Mo:BiVO4/SnO2/Si by thermally increasing the minority carrier diffusion length. Energ Environ Sci, 2016, 9, 2044 doi: 10.1039/C6EE00036C
[6]
Luo J, Steier L, Son M K, et al. Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett, 2016, 16, 1848 doi: 10.1021/acs.nanolett.5b04929
[7]
Domen K, Naito S, Soma M, et al. Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. J Chem Soc Chem Commun, 1980, 12, 543 doi: 10.1039/c39800000543
[8]
Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414, 625 doi: 10.1038/414625a
[9]
Maeda K, Takata T, Hara M, et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc, 2005, 127, 8286 doi: 10.1021/ja0518777
[10]
Liu J, Liu Y, Liu N, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015, 347, 970 doi: 10.1126/science.aaa3145
[11]
Takata T, Jiang J, Sakata Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature, 2020, 581, 411 doi: 10.1038/s41586-020-2278-9
[12]
Maeda K, Domen K. Photocatalytic water eplitting: Recent progress and future challenges. J Phys Chem Lett, 2010, 1, 2655 doi: 10.1021/jz1007966
[13]
Wang Z, Inoue Y, Hisatomi T, et al. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat Catal, 2018, 1, 756 doi: 10.1038/s41929-018-0134-1
[14]
Wang Q, Nakabayashi M, Hisatomi T, et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat Mater, 2019, 18, 827 doi: 10.1038/s41563-019-0399-z
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3045 Times PDF downloads: 53 Times Cited by: 0 Times

    History

    Received: Revised: Online: Accepted Manuscript: 13 August 2020Uncorrected proof: 18 August 2020Published: 04 September 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jun Liu, Zhijie Wang, Yong Lei. A close step towards industrialized application of solar water splitting[J]. Journal of Semiconductors, 2020, 41(9): 090401. doi: 10.1088/1674-4926/41/9/090401 ****J Liu, Z J Wang, Y Lei, A close step towards industrialized application of solar water splitting[J]. J. Semicond., 2020, 41(9): 090401. doi: 10.1088/1674-4926/41/9/090401.
      Citation:
      Jun Liu, Zhijie Wang, Yong Lei. A close step towards industrialized application of solar water splitting[J]. Journal of Semiconductors, 2020, 41(9): 090401. doi: 10.1088/1674-4926/41/9/090401 ****
      J Liu, Z J Wang, Y Lei, A close step towards industrialized application of solar water splitting[J]. J. Semicond., 2020, 41(9): 090401. doi: 10.1088/1674-4926/41/9/090401.

      A close step towards industrialized application of solar water splitting

      doi: 10.1088/1674-4926/41/9/090401
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return