REVIEWS

Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting

Mengmeng Ma1, 2, M, Yanbin Huang1, 3, M, Jun Liu1, 2, Kong Liu1, 2, Zhijie Wang1, 2, , Chao Zhao1, 2, , Shengchun Qu1, 2, and Zhanguo Wang1, 2

+ Author Affiliations

 Corresponding author: Zhijie Wang, wangzj@semi.ac.cn; Chao Zhao, zhaochao@semi.ac.cn; Shengchun Qu, qsc@semi.ac.cn

PDF

Turn off MathJax

Abstract: Solar water splitting is a promising strategy for the sustainable production of renewable hydrogen and solving the world’s crisis of energy and environment. The third-generation direct bandgap semiconductor of zinc oxide (ZnO) with properties of environmental friendliness and high efficiency for various photocatalytic reactions, is a suitable material for photoanodes because of its appropriate band structure, fine surface structure, and high electron mobility. However, practical applications of ZnO are usually limited by its high recombination rate of photogenerated electron–hole pairs, lack of surface reaction force, inadequate visible light response, and intrinsic photocorrosion. Given the lack of review on ZnO’s application in photoelectrochemical (PEC) water splitting, this paper reviews ZnO’s research progress in PEC water splitting. It commences with the basic principle of PEC water splitting and the structure and properties of ZnO. Then, we explicitly describe the related strategies to solve the above problems of ZnO as a photoanode, including morphology control, doping modification, construction of heterostructure, and the piezo-photoelectric enhancement of ZnO. This review aims to comprehensively describe recent findings and developments of ZnO in PEC water splitting and to provide a useful reference for the further application and development of ZnO nanomaterials in highly efficient PEC water splitting.

Key words: ZnOphotoelectrochemicalwater splittingphotoanode



[1]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37 doi: 10.1038/238037a0
[2]
Bhatt M D, Lee J S. Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells. J Mater Chem, 2015, 3, 10632 doi: 10.1039/C5TA00257E
[3]
Qiu Y C, Pan Z H, Chen H N, et al. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Sci Bull, 2019, 64, 1348 doi: 10.1016/j.scib.2019.07.017
[4]
Wang L, Liu S, Wang Z, et al. Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano, 2016, 10, 2636 doi: 10.1021/acsnano.5b07678
[5]
Liu B D, Li J, Yang W J, et al. Semiconductor solid-solution nanostructures: Synthesis, property tailoring, and applications. Small, 2017, 13, 1701998 doi: 10.1002/smll.201701998
[6]
He H C, Liao A Z, Guo W L, et al. State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis. Nano Today, 2019, 28, 100763 doi: 10.1016/j.nantod.2019.100763
[7]
Zhang Y Y, Ram M K, Stefanakos E K, et al. Synthesis, characterization, and applications of ZnO nanowires. J Nanomater, 2012, 2012, 1 doi: 10.1155/2012/624520
[8]
Xu P S, Sun Y M, Shi C S, et al. The electronic structure and spectral properties of ZnO and its defects. Nucl Instrum Methods Phys Res B, 2003, 199, 286 doi: 10.1016/S0168-583X(02)01425-8
[9]
Xu S, Wang Z L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res, 2011, 4, 1013 doi: 10.1007/s12274-011-0160-7
[10]
Özgür, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices. J Appl Phys, 2005, 98, 041301 doi: 10.1063/1.1992666
[11]
Wang Z L. Progress in piezotronics and piezo-phototronics. Adv Mater, 2012, 24, 4632 doi: 10.1002/adma.201104365
[12]
Yuan Y, Tang A W. Progress on the controllable synthesis of all-inorganic halide perovskite nanocrystals and their optoelectronic applications. J Semicond, 2020, 41, 011201 doi: 10.1088/1674-4926/41/1/011201
[13]
Huang Y B, Liu J, Deng Y C, et al. The application of perovskite materials in solar water splitting. J Semicond, 2020, 41, 011701 doi: 10.1088/1674-4926/41/1/011701
[14]
Rettie A J E, Lee H C, Marshall L G, et al. Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: Intrinsic behavior of a complex metal oxide. J Am Chem Soc, 2013, 135, 11389 doi: 10.1021/ja405550k
[15]
Wang M, Ren F, Zhou J G, et al. N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: Engineered impurity distribution and terraced band structure. Sci Rep, 2015, 5, 12925 doi: 10.1038/srep12925
[16]
Pourrahimi A M, Villa K, Manzanares Palenzuela C L, et al. Catalytic and light-driven ZnO/Pt Janus nano/micromotors: Switching of motion mechanism via interface roughness and defect tailoring at the nanoscale. Adv Funct Mater, 2019, 29, 1808678 doi: 10.1002/adfm.201808678
[17]
Osterloh F E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev, 2013, 42, 2294 doi: 10.1039/C2CS35266D
[18]
Zhao C, Xu B, Wang Z J, et al. Boron-doped III–V semiconductors for Si-based optoelectronic devices. J Semicond, 2020, 41, 011301 doi: 10.1088/1674-4926/41/1/011301
[19]
Wang R N, Chen S B, Ng Y H, et al. ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution. Chem Eng J, 2019, 362, 658 doi: 10.1016/j.cej.2019.01.073
[20]
Wolcott A, Smith W A, Kuykendall T R, et al. Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv Funct Mater, 2009, 19, 1849 doi: 10.1002/adfm.200801363
[21]
Yang X Y, Wolcott A, Wang G M, et al. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett, 2009, 9, 2331 doi: 10.1021/nl900772q
[22]
Qiu Y C, Yan K Y, Deng H, et al. Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water splitting. Nano Lett, 2012, 12, 407 doi: 10.1021/nl2037326
[23]
Wang T, Lv R, Zhang P, et al. Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale, 2015, 7, 77 doi: 10.1039/C4NR03735A
[24]
Zhou T S, Wang J C, Chen S, et al. Bird-nest structured ZnO/TiO2 as a direct Z-scheme photoanode with enhanced light harvesting and carriers kinetics for highly efficient and stable photoelectrochemical water splitting. Appl Catal B, 2020, 267, 118599 doi: 10.1016/j.apcatb.2020.118599
[25]
Tynell T, Karppinen M. Atomic layer deposition of ZnO: A review. Semicond Sci Technol, 2014, 29, 043001 doi: 10.1088/0268-1242/29/4/043001
[26]
Zhang J Z. Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting. MRS Bull, 2011, 36, 48 doi: 10.1557/mrs.2010.9
[27]
Kang Z, Si H N, Zhang S C, et al. Interface engineering for modulation of charge carrier behavior in ZnO photoelectrochemical water splitting. Adv Funct Mater, 2019, 29, 1808032 doi: 10.1002/adfm.201808032
[28]
Ma S S K, Hisatomi T, Domen K. Hydrogen production by photocatalytic water splitting. J Jpn Petrol Inst, 2013, 56, 280 doi: 10.1627/jpi.56.280
[29]
Xie S L, Lu X H, Zhai T, et al. Enhanced photoactivity and stability of carbon and nitrogen co-treated ZnO nanorod arrays for photoelectrochemical water splitting. J Mater Chem, 2012, 22, 14272 doi: 10.1039/c2jm32605a
[30]
Commandeur D, Brown G, McNulty P, et al. Yttrium-doped ZnO nanorod arrays for increased charge mobility and carrier density for enhanced solar water splitting. J Phys Chem C, 2019, 123, 18187 doi: 10.1021/acs.jpcc.9b03609
[31]
Wannapop S, Somdee A. Effect of citric acid on the synthesis of ZnWO4/ZnO nanorods for photoelectrochemical water splitting. Inorg Chem Commun, 2020, 115, 107857 doi: 10.1016/j.inoche.2020.107857
[32]
Sharma M D, Mahala C, Basu M. Sensitization of vertically grown ZnO 2D thin sheets by MoSx for efficient charge separation process towards photoelectrochemical water splitting reaction. Int J Hydrog Energy, 2020, 45, 12272 doi: 10.1016/j.ijhydene.2020.02.190
[33]
Liu C, Meng F L, Zhang L, et al. CuO/ZnO heterojunction nanoarrays for enhanced photoelectrochemical water oxidation. Appl Surf Sci, 2019, 469, 276 doi: 10.1016/j.apsusc.2018.11.054
[34]
Li J M, Cheng H Y, Chiu Y H, et al. ZnO–Au–SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting. Nanoscale, 2016, 8, 15720 doi: 10.1039/C6NR05605A
[35]
Chen H M, Chen C, Chang Y C, et al. Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: True efficiency for water splitting. Angew Chem Int Ed, 2010, 49, 5966 doi: 10.1002/anie.201001827
[36]
Guo C X, Dong Y Q, Yang H B, et al. Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 Glass for enhanced photoelectrochemical water splitting. Adv Energy Mater, 2013, 3, 997 doi: 10.1002/aenm.201300171
[37]
Wang G M, Yang X Y, Qian F, et al. Double-sided CdS and CdSe quantum dot Co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett, 2010, 10, 1088 doi: 10.1021/nl100250z
[38]
Jiang H Y, Chen Y J, Li L, et al. Hierarchical ZnO nanorod/ZnFe2O4 nanosheet core/shell nanoarray decorated with PbS quantum dots for efficient photoelectrochemical water splitting. J Alloy Compd, 2020, 828, 154449 doi: 10.1016/j.jallcom.2020.154449
[39]
Han H, Karlicky F, Pitchaimuthu S, et al. Highly ordered N-doped carbon dots photosensitizer on metal–organic framework-decorated ZnO nanotubes for improved photoelectrochemical water splitting. Small, 2019, 15, 1902771 doi: 10.1002/smll.201902771
[40]
Zhang X, Liu Y, Kang Z H. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl Mater Interfaces, 2014, 6, 4480 doi: 10.1021/am500234v
[41]
Wei Y F, Ke L, Kong J H, et al. Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnology, 2012, 23, 235401 doi: 10.1088/0957-4484/23/23/235401
[42]
Wei R B, Kuang P Y, Cheng H, et al. Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustain Chem Eng, 2017, 5, 4249 doi: 10.1021/acssuschemeng.7b00242
[43]
Chen S Y, Wang L W. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem Mater, 2012, 24, 3659 doi: 10.1021/cm302533s
[44]
Liu C F, Lu Y J, Hu C C. Effects of anions and pH on the stability of ZnO nanorods for photoelectrochemical water splitting. ACS Omega, 2018, 3, 3429 doi: 10.1021/acsomega.8b00214
[45]
Kegel J, Povey I M, Pemble M E. Zinc oxide for solar water splitting: A brief review of the material's challenges and associated opportunities. Nano Energy, 2018, 54, 409 doi: 10.1016/j.nanoen.2018.10.043
[46]
Liu M Z, Nam C Y, Black C T, et al. Enhancing water splitting activity and chemical stability of zinc oxide nanowire photoanodes with ultrathin titania shells. J Phys Chem C, 2013, 117, 13396 doi: 10.1021/jp404032p
[47]
Shao M F, Ning F Y, Wei M, et al. Nanowire arrays: Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water. Adv Funct Mater, 2014, 24, 565 doi: 10.1002/adfm.201470025
[48]
Long X F, Gao L L, Li F, et al. Bamboo shoots shaped FeVO4 passivated ZnO nanorods photoanode for improved charge separation/transfer process towards efficient solar water splitting. Appl Catal B, 2019, 257, 117813 doi: 10.1016/j.apcatb.2019.117813
[49]
Li X, Liu S W, Fan K, et al. MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting. Adv Energy Mater, 2018, 8, 1800101 doi: 10.1002/aenm.201800101
[50]
He H X, Fu Y M, Zang W L, et al. A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multi-functions of tactile-perception, atmosphere-detection and self-clean. Nano Energy, 2017, 31, 37 doi: 10.1016/j.nanoen.2016.11.020
[51]
Pan C F, Zhai J Y, Wang Z L. Piezotronics and piezo-phototronics of third generation semiconductor nanowires. Chem Rev, 2019, 119, 9303 doi: 10.1021/acs.chemrev.8b00599
[52]
Chen X Y, Liu L F, Feng Y W, et al. Fluid eddy induced piezo-promoted photodegradation of organic dye pollutants in wastewater on ZnO nanorod arrays/3D Ni foam. Mater Today, 2017, 20, 501 doi: 10.1016/j.mattod.2017.08.027
[53]
Xiang D L, Liu Z R, Wu M Q, et al. Enhanced piezo-photoelectric catalysis with oriented carrier migration in asymmetric Au–ZnO nanorod array. Small, 2020, 16, 1907603 doi: 10.1002/smll.201907603
[54]
Pan L, Sun S C, Chen Y, et al. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv Energy Mater, 2020, 10, 2000214 doi: 10.1002/aenm.202000214
Fig. 1.  (Color online) PEC water splitting in (a) the n-type semiconductor-based PEC system, (b) p-type semiconductor-based PEC system, and (c) tandem system[6].

Fig. 2.  (Color online) Main processes of PEC water splitting for n-type semiconductors.

Fig. 3.  (Color online) (a) ZnO model of the hexagonal wurtzite structure, (b) schematic illustrations of atoms and charges distribution in the unit cell of Wurlitzer-structure ZnO, where F and P represent the applied stress and the induced electric dipole moment, respectively[11].

Fig. 4.  (Color online) Energy potentials of ZnO and redox potentials for PEC water splitting at pH = 7, relative to NHE (normal hydrogen electrode).

Fig. 5.  (Color online) Carrier transport mechanism of the ZnO photoanode.

Fig. 6.  (Color online) Schematic illustration of the preparation processes of CS ZnO/TiO2 and BN ZnO/TiO2[24].

Fig. 7.  (Color online) Effect of element doping on band structure[27].

Fig. 8.  (Color online) (a) Schematic diagram of N gradient doped ZnO nanorods and stepped band structure to promote carrier separation[15]. (b) Morphological benefits of Y doping and schematic of increased electron mobility from trap filling[30].

Fig. 9.  (Color online) Schematic diagrams of the forms of (a) type-II junction, (b) p–n junction, (c) Z-scheme system, and (d) hot-electron injection[3].

Fig. 10.  (Color online) Schematic illustration of the proposed mechanism for the charge transfer (a) in ZnWO4/ZnO photoanode[31], (b) between ZnO and MoSx co-catalyst[32], (c) for the system of ZnO/CdS/PbS ONTs[19], and (d) ZnO–Au–SnO2[34].

Fig. 11.  (Color online) (a) Bilateral CdS–ZnO–ZnO–CdSe nanowire array photoanode structure and corresponding energy level diagram[37]. (b) Synthetic route diagram and (c) schematic of the potential energy diagram of the ZnO/ZnFe2O4/PbS nanorod arrays electrode[38].

Fig. 12.  (Color online) (a) The main mechanism of Au/3D ZnO nanowire photoelectrode[40]. (b) Schematic diagram of bending the sample to bending radius R under light[41].

Fig. 13.  (Color online) Schematic band alignment of charge transport and recombination models in (a) ZnO and (b) FVO/ZnO photoanodes[48].

Fig. 14.  (Color online) Piezo-phototronic effect on the photoelectrocatalytic process (photoanode). Illustration of the photoelectrocatalytic process (a) without strain, (b) under tensile strain, and (c) under compressive strain[11].

Fig. 15.  (Color online) Schematic illustration of the enhanced catalytic performance induced by piezotronic effect and unique asymmetric nanostructure under light irradiation and ultrasonic actuation (ϕSB, Schottky barrier; ECB and EVB, the CB and VB of ZnO, respectively; Ef, the Fermi level of the Asy–Au–ZnO composite structure)[53].

[1]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37 doi: 10.1038/238037a0
[2]
Bhatt M D, Lee J S. Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells. J Mater Chem, 2015, 3, 10632 doi: 10.1039/C5TA00257E
[3]
Qiu Y C, Pan Z H, Chen H N, et al. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Sci Bull, 2019, 64, 1348 doi: 10.1016/j.scib.2019.07.017
[4]
Wang L, Liu S, Wang Z, et al. Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano, 2016, 10, 2636 doi: 10.1021/acsnano.5b07678
[5]
Liu B D, Li J, Yang W J, et al. Semiconductor solid-solution nanostructures: Synthesis, property tailoring, and applications. Small, 2017, 13, 1701998 doi: 10.1002/smll.201701998
[6]
He H C, Liao A Z, Guo W L, et al. State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis. Nano Today, 2019, 28, 100763 doi: 10.1016/j.nantod.2019.100763
[7]
Zhang Y Y, Ram M K, Stefanakos E K, et al. Synthesis, characterization, and applications of ZnO nanowires. J Nanomater, 2012, 2012, 1 doi: 10.1155/2012/624520
[8]
Xu P S, Sun Y M, Shi C S, et al. The electronic structure and spectral properties of ZnO and its defects. Nucl Instrum Methods Phys Res B, 2003, 199, 286 doi: 10.1016/S0168-583X(02)01425-8
[9]
Xu S, Wang Z L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res, 2011, 4, 1013 doi: 10.1007/s12274-011-0160-7
[10]
Özgür, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices. J Appl Phys, 2005, 98, 041301 doi: 10.1063/1.1992666
[11]
Wang Z L. Progress in piezotronics and piezo-phototronics. Adv Mater, 2012, 24, 4632 doi: 10.1002/adma.201104365
[12]
Yuan Y, Tang A W. Progress on the controllable synthesis of all-inorganic halide perovskite nanocrystals and their optoelectronic applications. J Semicond, 2020, 41, 011201 doi: 10.1088/1674-4926/41/1/011201
[13]
Huang Y B, Liu J, Deng Y C, et al. The application of perovskite materials in solar water splitting. J Semicond, 2020, 41, 011701 doi: 10.1088/1674-4926/41/1/011701
[14]
Rettie A J E, Lee H C, Marshall L G, et al. Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: Intrinsic behavior of a complex metal oxide. J Am Chem Soc, 2013, 135, 11389 doi: 10.1021/ja405550k
[15]
Wang M, Ren F, Zhou J G, et al. N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: Engineered impurity distribution and terraced band structure. Sci Rep, 2015, 5, 12925 doi: 10.1038/srep12925
[16]
Pourrahimi A M, Villa K, Manzanares Palenzuela C L, et al. Catalytic and light-driven ZnO/Pt Janus nano/micromotors: Switching of motion mechanism via interface roughness and defect tailoring at the nanoscale. Adv Funct Mater, 2019, 29, 1808678 doi: 10.1002/adfm.201808678
[17]
Osterloh F E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev, 2013, 42, 2294 doi: 10.1039/C2CS35266D
[18]
Zhao C, Xu B, Wang Z J, et al. Boron-doped III–V semiconductors for Si-based optoelectronic devices. J Semicond, 2020, 41, 011301 doi: 10.1088/1674-4926/41/1/011301
[19]
Wang R N, Chen S B, Ng Y H, et al. ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution. Chem Eng J, 2019, 362, 658 doi: 10.1016/j.cej.2019.01.073
[20]
Wolcott A, Smith W A, Kuykendall T R, et al. Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv Funct Mater, 2009, 19, 1849 doi: 10.1002/adfm.200801363
[21]
Yang X Y, Wolcott A, Wang G M, et al. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett, 2009, 9, 2331 doi: 10.1021/nl900772q
[22]
Qiu Y C, Yan K Y, Deng H, et al. Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water splitting. Nano Lett, 2012, 12, 407 doi: 10.1021/nl2037326
[23]
Wang T, Lv R, Zhang P, et al. Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale, 2015, 7, 77 doi: 10.1039/C4NR03735A
[24]
Zhou T S, Wang J C, Chen S, et al. Bird-nest structured ZnO/TiO2 as a direct Z-scheme photoanode with enhanced light harvesting and carriers kinetics for highly efficient and stable photoelectrochemical water splitting. Appl Catal B, 2020, 267, 118599 doi: 10.1016/j.apcatb.2020.118599
[25]
Tynell T, Karppinen M. Atomic layer deposition of ZnO: A review. Semicond Sci Technol, 2014, 29, 043001 doi: 10.1088/0268-1242/29/4/043001
[26]
Zhang J Z. Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting. MRS Bull, 2011, 36, 48 doi: 10.1557/mrs.2010.9
[27]
Kang Z, Si H N, Zhang S C, et al. Interface engineering for modulation of charge carrier behavior in ZnO photoelectrochemical water splitting. Adv Funct Mater, 2019, 29, 1808032 doi: 10.1002/adfm.201808032
[28]
Ma S S K, Hisatomi T, Domen K. Hydrogen production by photocatalytic water splitting. J Jpn Petrol Inst, 2013, 56, 280 doi: 10.1627/jpi.56.280
[29]
Xie S L, Lu X H, Zhai T, et al. Enhanced photoactivity and stability of carbon and nitrogen co-treated ZnO nanorod arrays for photoelectrochemical water splitting. J Mater Chem, 2012, 22, 14272 doi: 10.1039/c2jm32605a
[30]
Commandeur D, Brown G, McNulty P, et al. Yttrium-doped ZnO nanorod arrays for increased charge mobility and carrier density for enhanced solar water splitting. J Phys Chem C, 2019, 123, 18187 doi: 10.1021/acs.jpcc.9b03609
[31]
Wannapop S, Somdee A. Effect of citric acid on the synthesis of ZnWO4/ZnO nanorods for photoelectrochemical water splitting. Inorg Chem Commun, 2020, 115, 107857 doi: 10.1016/j.inoche.2020.107857
[32]
Sharma M D, Mahala C, Basu M. Sensitization of vertically grown ZnO 2D thin sheets by MoSx for efficient charge separation process towards photoelectrochemical water splitting reaction. Int J Hydrog Energy, 2020, 45, 12272 doi: 10.1016/j.ijhydene.2020.02.190
[33]
Liu C, Meng F L, Zhang L, et al. CuO/ZnO heterojunction nanoarrays for enhanced photoelectrochemical water oxidation. Appl Surf Sci, 2019, 469, 276 doi: 10.1016/j.apsusc.2018.11.054
[34]
Li J M, Cheng H Y, Chiu Y H, et al. ZnO–Au–SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting. Nanoscale, 2016, 8, 15720 doi: 10.1039/C6NR05605A
[35]
Chen H M, Chen C, Chang Y C, et al. Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: True efficiency for water splitting. Angew Chem Int Ed, 2010, 49, 5966 doi: 10.1002/anie.201001827
[36]
Guo C X, Dong Y Q, Yang H B, et al. Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 Glass for enhanced photoelectrochemical water splitting. Adv Energy Mater, 2013, 3, 997 doi: 10.1002/aenm.201300171
[37]
Wang G M, Yang X Y, Qian F, et al. Double-sided CdS and CdSe quantum dot Co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett, 2010, 10, 1088 doi: 10.1021/nl100250z
[38]
Jiang H Y, Chen Y J, Li L, et al. Hierarchical ZnO nanorod/ZnFe2O4 nanosheet core/shell nanoarray decorated with PbS quantum dots for efficient photoelectrochemical water splitting. J Alloy Compd, 2020, 828, 154449 doi: 10.1016/j.jallcom.2020.154449
[39]
Han H, Karlicky F, Pitchaimuthu S, et al. Highly ordered N-doped carbon dots photosensitizer on metal–organic framework-decorated ZnO nanotubes for improved photoelectrochemical water splitting. Small, 2019, 15, 1902771 doi: 10.1002/smll.201902771
[40]
Zhang X, Liu Y, Kang Z H. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl Mater Interfaces, 2014, 6, 4480 doi: 10.1021/am500234v
[41]
Wei Y F, Ke L, Kong J H, et al. Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnology, 2012, 23, 235401 doi: 10.1088/0957-4484/23/23/235401
[42]
Wei R B, Kuang P Y, Cheng H, et al. Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustain Chem Eng, 2017, 5, 4249 doi: 10.1021/acssuschemeng.7b00242
[43]
Chen S Y, Wang L W. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem Mater, 2012, 24, 3659 doi: 10.1021/cm302533s
[44]
Liu C F, Lu Y J, Hu C C. Effects of anions and pH on the stability of ZnO nanorods for photoelectrochemical water splitting. ACS Omega, 2018, 3, 3429 doi: 10.1021/acsomega.8b00214
[45]
Kegel J, Povey I M, Pemble M E. Zinc oxide for solar water splitting: A brief review of the material's challenges and associated opportunities. Nano Energy, 2018, 54, 409 doi: 10.1016/j.nanoen.2018.10.043
[46]
Liu M Z, Nam C Y, Black C T, et al. Enhancing water splitting activity and chemical stability of zinc oxide nanowire photoanodes with ultrathin titania shells. J Phys Chem C, 2013, 117, 13396 doi: 10.1021/jp404032p
[47]
Shao M F, Ning F Y, Wei M, et al. Nanowire arrays: Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water. Adv Funct Mater, 2014, 24, 565 doi: 10.1002/adfm.201470025
[48]
Long X F, Gao L L, Li F, et al. Bamboo shoots shaped FeVO4 passivated ZnO nanorods photoanode for improved charge separation/transfer process towards efficient solar water splitting. Appl Catal B, 2019, 257, 117813 doi: 10.1016/j.apcatb.2019.117813
[49]
Li X, Liu S W, Fan K, et al. MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting. Adv Energy Mater, 2018, 8, 1800101 doi: 10.1002/aenm.201800101
[50]
He H X, Fu Y M, Zang W L, et al. A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multi-functions of tactile-perception, atmosphere-detection and self-clean. Nano Energy, 2017, 31, 37 doi: 10.1016/j.nanoen.2016.11.020
[51]
Pan C F, Zhai J Y, Wang Z L. Piezotronics and piezo-phototronics of third generation semiconductor nanowires. Chem Rev, 2019, 119, 9303 doi: 10.1021/acs.chemrev.8b00599
[52]
Chen X Y, Liu L F, Feng Y W, et al. Fluid eddy induced piezo-promoted photodegradation of organic dye pollutants in wastewater on ZnO nanorod arrays/3D Ni foam. Mater Today, 2017, 20, 501 doi: 10.1016/j.mattod.2017.08.027
[53]
Xiang D L, Liu Z R, Wu M Q, et al. Enhanced piezo-photoelectric catalysis with oriented carrier migration in asymmetric Au–ZnO nanorod array. Small, 2020, 16, 1907603 doi: 10.1002/smll.201907603
[54]
Pan L, Sun S C, Chen Y, et al. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv Energy Mater, 2020, 10, 2000214 doi: 10.1002/aenm.202000214
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5243 Times PDF downloads: 251 Times Cited by: 0 Times

    History

    Received: 29 May 2020 Revised: 16 June 2020 Online: Accepted Manuscript: 30 July 2020Uncorrected proof: 03 August 2020Published: 04 September 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Mengmeng Ma, Yanbin Huang, Jun Liu, Kong Liu, Zhijie Wang, Chao Zhao, Shengchun Qu, Zhanguo Wang. Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting[J]. Journal of Semiconductors, 2020, 41(9): 091702. doi: 10.1088/1674-4926/41/9/091702 ****M M Ma, Y B Huang, J Liu, K Liu, Z J Wang, C Zhao, S C Qu, Z G Wang, Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting[J]. J. Semicond., 2020, 41(9): 091702. doi: 10.1088/1674-4926/41/9/091702.
      Citation:
      Mengmeng Ma, Yanbin Huang, Jun Liu, Kong Liu, Zhijie Wang, Chao Zhao, Shengchun Qu, Zhanguo Wang. Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting[J]. Journal of Semiconductors, 2020, 41(9): 091702. doi: 10.1088/1674-4926/41/9/091702 ****
      M M Ma, Y B Huang, J Liu, K Liu, Z J Wang, C Zhao, S C Qu, Z G Wang, Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting[J]. J. Semicond., 2020, 41(9): 091702. doi: 10.1088/1674-4926/41/9/091702.

      Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting

      doi: 10.1088/1674-4926/41/9/091702
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return