J. Semicond. > 2021, Volume 42 > Issue 4 > 041304

REVIEWS

Photonic devices based on thin-film lithium niobate on insulator

Shuai Yuan, Changran Hu, An Pan, Yuedi Ding, Xuanhao Wang, Zhicheng Qu, Junjie Wei, Yuheng Liu, Cheng Zeng and Jinsong Xia

+ Author Affiliations

 Corresponding author: Cheng Zeng, zengchengwuli@hust.edu.cn; Jinsong Xia, jsxia@hust.edu.cn

DOI: 10.1088/1674-4926/42/4/041304

PDF

Turn off MathJax

Abstract: Lithium niobate on insulator (LNOI) is rising as one of the most promising platforms for integrated photonics due to the high-index-contrast and excellent material properties of lithium niobate, such as wideband transparency from visible to mid-infrared, large electro-optic, piezoelectric, and second-order harmonic coefficients. The fast-developing micro- and nano-structuring techniques on LNOI have enabled various structure, devices, systems, and applications. In this contribution, we review the latest developments in this platform, including ultra-high speed electro-optic modulators, optical frequency combs, opto-electro-mechanical system on chip, second-harmonic generation in periodically poled LN waveguides, and efficient edge coupling for LNOI.

Key words: thin-film lithium niobatemodulatorPPLNedge coupler



[1]
Marpaung D, Roeloffzen C, Heideman R, et al. Integrated microwave photonics. Laser Photonics Rev, 2013, 7, 506 doi: 10.1002/lpor.201200032
[2]
Ye W N, Xiong Y L. Review of silicon photonics: History and recent advances. J Mod Opt, 2013, 60, 1299 doi: 10.1080/09500340.2013.839836
[3]
Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003 doi: 10.1088/2040-8978/18/7/073003
[4]
van der Tol J J G M, Jiao Y Q, Shen L F, et al. Indium phosphide integrated photonics in membranes. IEEE J Sel Top Quantum Electron, 2018, 24, 1 doi: 10.1109/JSTQE.2017.2772786
[5]
Wang C, Zhang M, Stern B, et al. Nanophotonic lithium niobate electro-optic modulators. Opt Express, 2018, 26, 1547 doi: 10.1364/OE.26.001547
[6]
Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562, 101 doi: 10.1038/s41586-018-0551-y
[7]
He Y, Yang Q F, Ling J W, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 2019, 6, 1138 doi: 10.1364/OPTICA.6.001138
[8]
Sua Y, Chen J Y, Huang Y P. Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched PPLN waveguide. Opt Lett, 2018, 43, 2965 doi: 10.1364/OL.43.002965
[9]
Wang T J, Chu C H, Lin C Y. Electro-optically tunable microring resonators on lithium niobate. Opt Lett, 2007, 32, 2777 doi: 10.1364/OL.32.002777
[10]
Chiles J, Fathpour S. Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics. Optica, 2014, 1, 350 doi: 10.1364/OPTICA.1.000350
[11]
Stenger V E, Toney J, PoNick A, et al. Low loss and low vpi thin film lithium niobate on quartz electro-optic modulators. European Conference on Optical Communication (ECOC), 2017, 1
[12]
Stenger V, Toney J, Pollick A, et al. Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators. CLEO: 2013, OSA Technical Digest, 2013, CW3O.3
[13]
Wang C, Zhang M, Yu M, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat Commun, 2019, 10, 978 doi: 10.1038/s41467-019-08969-6
[14]
Li M X, Ling J W, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun, 2020, 11, 4123 doi: 10.1038/s41467-020-17950-7
[15]
Han S, Cong L, Srivastava Y K, et al. All-dielectric active terahertz photonics driven by bound states in the continuum. Adv Mater, 2019, 31, e1901921 doi: 10.1002/adma.201901921
[16]
Xu M, He M, Zhang H, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat Commun, 2020, 11, 3911 doi: 10.1038/s41467-020-17806-0
[17]
Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332, 555 doi: 10.1126/science.1193968
[18]
Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators. Nat Photonics, 2014, 8, 145 doi: 10.1038/nphoton.2013.343
[19]
Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 2017, 546, 274 doi: 10.1038/nature22387
[20]
DeSalvo R, Said A A, Hagan D J, et al. Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids. IEEE J Quantum Electron, 1996, 32, 1324 doi: 10.1109/3.511545
[21]
Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 2017, 4, 1536 doi: 10.1364/OPTICA.4.001536
[22]
Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568, 373 doi: 10.1038/s41586-019-1008-7
[23]
Pan A, Hu C R, Zeng C, et al. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Opt Express, 2019, 27, 35659 doi: 10.1364/OE.27.035659
[24]
Liu K, Ye C, Khan S, et al. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photonics Rev, 2015, 9, 172 doi: 10.1002/lpor.201400219
[25]
Faraon A, Vučković J. Local temperature control of photonic crystal devices via micron-scale electrical heaters. Appl Phys Lett, 2009, 95, 043102 doi: 10.1063/1.3189081
[26]
Bennett B R, Soref R A, del Alamo J A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J Quantum Electron, 1990, 26, 113 doi: 10.1109/3.44924
[27]
Baker C, Hease W, Nguyen D T, et al. Photoelastic coupling in gallium arsenide optomechanical disk resonators. Opt Express, 2014, 22, 14072 doi: 10.1364/OE.22.014072
[28]
Midolo L, Schliesser A, Fiore A. Nano-opto-electro-mechanical systems. Nat Nanotechnol, 2018, 13, 11 doi: 10.1038/s41565-017-0039-1
[29]
Weis R S, Gaylord T K. Lithium niobate: Summary of physical properties and crystal structure. Appl Phys A, 1985, 37, 191 doi: 10.1007/BF00614817
[30]
Bhugra H, Piazza G. Piezoelectric MEMS resonators. Cham: Springer International Publishing, 2017
[31]
Gong S B, Piazza G. Design and analysis of lithium–niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering. IEEE Trans Microw Theory Tech, 2013, 61, 403 doi: 10.1109/TMTT.2012.2228671
[32]
Poberaj G, Hu H, Sohler W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev, 2012, 6, 488 doi: 10.1002/lpor.201100035
[33]
Jiang W T, Patel R N, Mayor F M, et al. Lithium niobate piezo-optomechanical crystals. Optica, 2019, 6, 845 doi: 10.1364/OPTICA.6.000845
[34]
Cai L T, Mahmoud A, Khan M, et al. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Res, 2019, 7, 1003 doi: 10.1364/PRJ.7.001003
[35]
Shao L B, Yu M J, Maity S, et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 2019, 6, 1498 doi: 10.1364/OPTICA.6.001498
[36]
Wong K K. Properties of lithium niobate. IET, 2002
[37]
Nagy J T, Reano R M. Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films. Opt Mater Express, 2019, 9, 3146 doi: 10.1364/OME.9.003146
[38]
Wang C, Langrock C, Marandi A, et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 2018, 5, 1438 doi: 10.1364/OPTICA.5.001438
[39]
Niu Y F, Lin C, Liu X Y, et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl Phys Lett, 2020, 116, 101104 doi: 10.1063/1.5142750
[40]
Rao A, Rao A, Rao A, et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W−1cm−2. Opt Express, 2019, 27, 25920 doi: 10.1364/OE.27.025920
[41]
Lu J J, Surya J B, Liu X W, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica, 2019, 6, 1455 doi: 10.1364/OPTICA.6.001455
[42]
Chen J Y, Ma Z H, Sua Y, et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 2019, 6, 1244 doi: 10.1364/OPTICA.6.001244
[43]
Pohl D, Escalé M R, Madi M, et al. An integrated broadband spectrometer on thin-film lithium niobate. Nat Photonics, 2020, 14, 24 doi: 10.1038/s41566-019-0529-9
[44]
Yao N, Yao N, Zhou J X, et al. Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber. Opt Express, 2020, 28, 12416 doi: 10.1364/OE.391228
[45]
Krasnokutska I, Tambasco J L J, Peruzzo A. Nanostructuring of LNOI for efficient edge coupling. Opt Express, 2019, 27, 16578 doi: 10.1364/OE.27.016578
[46]
He L Y, He L Y, Zhang M, et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Opt Lett, 2019, 44, 2314 doi: 10.1364/OL.44.002314
[47]
Pan Y, Sun S H, Xu M Y, et al. Low fiber-to-fiber loss, large bandwidth and low drive voltage lithium niobate on insulator modulators. Conference on Lasers and Electro-Optics, 2020, JTh2B.10
[48]
Hu C R, Pan A, Li T, et al. High-efficient and polarization independent edge coupler for thin-film lithium niobite waveguide devices. arXiv: 2009.02855, 2020
Fig. 1.  (Color online) The structure of the EO modulator made by Wang et al.[6].

Fig. 2.  (Color online) (a) Optical image of the modulators on the chip fabricated in our group. (b) SEM image of the electrode of the modulator. (c) SEM image of the cross section of the modulator’s waveguide. (d) SEM image of the area where the electrode stepping over the waveguide.

Fig. 3.  (Color online) (a) The transmission spectrum of the modulator with and without the voltage applied. (b) The measured EO response of the modulator.

Fig. 4.  (Color online) (a) Monolithic integrated photonic circuit for frequency comb generation and manipulation[13]. (b) Integrated EO comb generator[22]. (c) LN microring mode-locked Kerr solitons. (d) Photorefractive and optical Kerr effect[7].

Fig. 5.  (Color online) SEM images of the microring resonator. (a) Coupling region of micro-ring. (b) Cross-section of waveguide. (c) Lorentz fitting of the resonance peak at 1572.6 nm, the Q-factor is 1.78 million[23].

Fig. 6.  (Color online) Optical spectrum of a frequency comb pumped at 1549.927 nm.

Fig. 7.  (Color online) (a) SEM of the one-dimensional optomechanical crystal (OMC) design[33]. (b) Schematic layouts of MZI- and resonator-type AOMs[34]. (c) Microscope image of a suspended acousto-optic MZI and a suspended optical racetrack cavity with a thin-film acoustic resonator and these acoustic S11 and opto-acoustic S21 spectra[35].

Fig. 8.  (Color online) (a) Schematic of poling electrodes and silicon nitride (SiN) strip on 700 nm thick x-cut MgO:LN thin film. (b) Zoomed-in view of poling electrode tip showing 160 nm chromium (Cr) on top of 100 nm SiO2. (c) Poling circuit; pulses generated from an arbitrary waveform generator (AWG) are amplified by a high voltage amplifier (HVA) and applied to a sample covered with silicone oil[37].

Fig. 9.  Top-view SEM of a poled MgO-LN mesa after etching in hydrofluoric acid.

Fig. 10.  (Color online) Zoomed-in view of the SHG spectral response of the 1440-nm-wide device (solid curve), together with the theoretically predicted responses[38].

Fig. 11.  (Color online) SHG total conversion efficiency as a function of input power in the pump-depletion region. The inset shows the input-output power relation in the low-conversion limit[38].

Fig. 12.  (Color online) (a) Numerical simulation of the poling period for QPM between the pump TE 00 and SH TM 00 modes using the Sellmeier equation for congruent LN. (b) Applied poling pulse shape. (c, d) False-color SEM images of a PPLN microring resonator etched with hydrofluoric acid and its zoomed-in view, revealing a poling duty cycle of ~35%[41].

Fig. 13.  (Color online) (a) PSHGPp2 relation. A linear fit is applied to the experimental data in the low-power region. A fitted slope of 1.02 implies a quadratic dependence of SHG power on the pump power. An SHG conversion efficiency of 250 000%/W is extracted. (b) Absolute conversion efficiency as a function of pump power, including the experimental data and theoretical fit[41].

Fig. 14.  (Color online) (a) Structure of the edge coupler. (b) Overhead view of the edge coupler[48].

Fig. 15.  (Color online) (a) Transmission spectrum of the fabricated single coupler. (b) Coupling loss versus different tip widths of the lower LN inversed taper (TE mode)[48].

[1]
Marpaung D, Roeloffzen C, Heideman R, et al. Integrated microwave photonics. Laser Photonics Rev, 2013, 7, 506 doi: 10.1002/lpor.201200032
[2]
Ye W N, Xiong Y L. Review of silicon photonics: History and recent advances. J Mod Opt, 2013, 60, 1299 doi: 10.1080/09500340.2013.839836
[3]
Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003 doi: 10.1088/2040-8978/18/7/073003
[4]
van der Tol J J G M, Jiao Y Q, Shen L F, et al. Indium phosphide integrated photonics in membranes. IEEE J Sel Top Quantum Electron, 2018, 24, 1 doi: 10.1109/JSTQE.2017.2772786
[5]
Wang C, Zhang M, Stern B, et al. Nanophotonic lithium niobate electro-optic modulators. Opt Express, 2018, 26, 1547 doi: 10.1364/OE.26.001547
[6]
Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562, 101 doi: 10.1038/s41586-018-0551-y
[7]
He Y, Yang Q F, Ling J W, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 2019, 6, 1138 doi: 10.1364/OPTICA.6.001138
[8]
Sua Y, Chen J Y, Huang Y P. Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched PPLN waveguide. Opt Lett, 2018, 43, 2965 doi: 10.1364/OL.43.002965
[9]
Wang T J, Chu C H, Lin C Y. Electro-optically tunable microring resonators on lithium niobate. Opt Lett, 2007, 32, 2777 doi: 10.1364/OL.32.002777
[10]
Chiles J, Fathpour S. Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics. Optica, 2014, 1, 350 doi: 10.1364/OPTICA.1.000350
[11]
Stenger V E, Toney J, PoNick A, et al. Low loss and low vpi thin film lithium niobate on quartz electro-optic modulators. European Conference on Optical Communication (ECOC), 2017, 1
[12]
Stenger V, Toney J, Pollick A, et al. Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators. CLEO: 2013, OSA Technical Digest, 2013, CW3O.3
[13]
Wang C, Zhang M, Yu M, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat Commun, 2019, 10, 978 doi: 10.1038/s41467-019-08969-6
[14]
Li M X, Ling J W, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun, 2020, 11, 4123 doi: 10.1038/s41467-020-17950-7
[15]
Han S, Cong L, Srivastava Y K, et al. All-dielectric active terahertz photonics driven by bound states in the continuum. Adv Mater, 2019, 31, e1901921 doi: 10.1002/adma.201901921
[16]
Xu M, He M, Zhang H, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat Commun, 2020, 11, 3911 doi: 10.1038/s41467-020-17806-0
[17]
Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332, 555 doi: 10.1126/science.1193968
[18]
Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators. Nat Photonics, 2014, 8, 145 doi: 10.1038/nphoton.2013.343
[19]
Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 2017, 546, 274 doi: 10.1038/nature22387
[20]
DeSalvo R, Said A A, Hagan D J, et al. Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids. IEEE J Quantum Electron, 1996, 32, 1324 doi: 10.1109/3.511545
[21]
Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 2017, 4, 1536 doi: 10.1364/OPTICA.4.001536
[22]
Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568, 373 doi: 10.1038/s41586-019-1008-7
[23]
Pan A, Hu C R, Zeng C, et al. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Opt Express, 2019, 27, 35659 doi: 10.1364/OE.27.035659
[24]
Liu K, Ye C, Khan S, et al. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photonics Rev, 2015, 9, 172 doi: 10.1002/lpor.201400219
[25]
Faraon A, Vučković J. Local temperature control of photonic crystal devices via micron-scale electrical heaters. Appl Phys Lett, 2009, 95, 043102 doi: 10.1063/1.3189081
[26]
Bennett B R, Soref R A, del Alamo J A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J Quantum Electron, 1990, 26, 113 doi: 10.1109/3.44924
[27]
Baker C, Hease W, Nguyen D T, et al. Photoelastic coupling in gallium arsenide optomechanical disk resonators. Opt Express, 2014, 22, 14072 doi: 10.1364/OE.22.014072
[28]
Midolo L, Schliesser A, Fiore A. Nano-opto-electro-mechanical systems. Nat Nanotechnol, 2018, 13, 11 doi: 10.1038/s41565-017-0039-1
[29]
Weis R S, Gaylord T K. Lithium niobate: Summary of physical properties and crystal structure. Appl Phys A, 1985, 37, 191 doi: 10.1007/BF00614817
[30]
Bhugra H, Piazza G. Piezoelectric MEMS resonators. Cham: Springer International Publishing, 2017
[31]
Gong S B, Piazza G. Design and analysis of lithium–niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering. IEEE Trans Microw Theory Tech, 2013, 61, 403 doi: 10.1109/TMTT.2012.2228671
[32]
Poberaj G, Hu H, Sohler W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev, 2012, 6, 488 doi: 10.1002/lpor.201100035
[33]
Jiang W T, Patel R N, Mayor F M, et al. Lithium niobate piezo-optomechanical crystals. Optica, 2019, 6, 845 doi: 10.1364/OPTICA.6.000845
[34]
Cai L T, Mahmoud A, Khan M, et al. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Res, 2019, 7, 1003 doi: 10.1364/PRJ.7.001003
[35]
Shao L B, Yu M J, Maity S, et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 2019, 6, 1498 doi: 10.1364/OPTICA.6.001498
[36]
Wong K K. Properties of lithium niobate. IET, 2002
[37]
Nagy J T, Reano R M. Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films. Opt Mater Express, 2019, 9, 3146 doi: 10.1364/OME.9.003146
[38]
Wang C, Langrock C, Marandi A, et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 2018, 5, 1438 doi: 10.1364/OPTICA.5.001438
[39]
Niu Y F, Lin C, Liu X Y, et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl Phys Lett, 2020, 116, 101104 doi: 10.1063/1.5142750
[40]
Rao A, Rao A, Rao A, et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W−1cm−2. Opt Express, 2019, 27, 25920 doi: 10.1364/OE.27.025920
[41]
Lu J J, Surya J B, Liu X W, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica, 2019, 6, 1455 doi: 10.1364/OPTICA.6.001455
[42]
Chen J Y, Ma Z H, Sua Y, et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 2019, 6, 1244 doi: 10.1364/OPTICA.6.001244
[43]
Pohl D, Escalé M R, Madi M, et al. An integrated broadband spectrometer on thin-film lithium niobate. Nat Photonics, 2020, 14, 24 doi: 10.1038/s41566-019-0529-9
[44]
Yao N, Yao N, Zhou J X, et al. Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber. Opt Express, 2020, 28, 12416 doi: 10.1364/OE.391228
[45]
Krasnokutska I, Tambasco J L J, Peruzzo A. Nanostructuring of LNOI for efficient edge coupling. Opt Express, 2019, 27, 16578 doi: 10.1364/OE.27.016578
[46]
He L Y, He L Y, Zhang M, et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Opt Lett, 2019, 44, 2314 doi: 10.1364/OL.44.002314
[47]
Pan Y, Sun S H, Xu M Y, et al. Low fiber-to-fiber loss, large bandwidth and low drive voltage lithium niobate on insulator modulators. Conference on Lasers and Electro-Optics, 2020, JTh2B.10
[48]
Hu C R, Pan A, Li T, et al. High-efficient and polarization independent edge coupler for thin-film lithium niobite waveguide devices. arXiv: 2009.02855, 2020
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4886 Times PDF downloads: 336 Times Cited by: 0 Times

    History

    Received: 12 November 2020 Revised: 08 January 2021 Online: Uncorrected proof: 22 February 2021Published: 12 April 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shuai Yuan, Changran Hu, An Pan, Yuedi Ding, Xuanhao Wang, Zhicheng Qu, Junjie Wei, Yuheng Liu, Cheng Zeng, Jinsong Xia. Photonic devices based on thin-film lithium niobate on insulator[J]. Journal of Semiconductors, 2021, 42(4): 041304. doi: 10.1088/1674-4926/42/4/041304 ****S Yuan, C R Hu, A Pan, Y D Ding, X H Wang, Z C Qu, J J Wei, Y H Liu, C Zeng, J S Xia, Photonic devices based on thin-film lithium niobate on insulator[J]. J. Semicond., 2021, 42(4): 041304. doi: 10.1088/1674-4926/42/4/041304.
      Citation:
      Shuai Yuan, Changran Hu, An Pan, Yuedi Ding, Xuanhao Wang, Zhicheng Qu, Junjie Wei, Yuheng Liu, Cheng Zeng, Jinsong Xia. Photonic devices based on thin-film lithium niobate on insulator[J]. Journal of Semiconductors, 2021, 42(4): 041304. doi: 10.1088/1674-4926/42/4/041304 ****
      S Yuan, C R Hu, A Pan, Y D Ding, X H Wang, Z C Qu, J J Wei, Y H Liu, C Zeng, J S Xia, Photonic devices based on thin-film lithium niobate on insulator[J]. J. Semicond., 2021, 42(4): 041304. doi: 10.1088/1674-4926/42/4/041304.

      Photonic devices based on thin-film lithium niobate on insulator

      DOI: 10.1088/1674-4926/42/4/041304
      More Information
      • Shuai Yuan:received his Ph.D. degree in optoelectronics from Huazhong University of Science and Technology, Wuhan, China, in 2018. He is currently a postdoctoral researcher in Wuhan National Laboratory for Optoelectronics. His research interests include dielectric resonant metasurface, germanium photodetectors, and optoelectronic devices on thin film lithium niobate
      • Cheng Zeng:received his Ph.D. from Huazhong University of Science and Technology in 2016. Now, he is a lecturer at the Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology. His research interests include thin film lithium niobate photonic devices and silicon-based photonic devices
      • Jinsong Xia:received the B. S. degree from USTC in 1999, and Ph.D. from Chinese Academy of Science in 2004. In 2010, he joined WNLO-HUST, where he is the director of Nano Fabrication Facility. His research interests include LNOI photonic devices and nano-fabrication. He has published more than 120 jounal papers and conference talks
      • Corresponding author: zengchengwuli@hust.edu.cnjsxia@hust.edu.cn
      • Received Date: 2020-11-12
      • Revised Date: 2021-01-08
      • Published Date: 2021-04-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return