Citation: |
Jianou Huang, Chao Li, Rongguo Lu, Lianyan Li, Zizheng Cao. Beyond the 100 Gbaud directly modulated laser for short reach applications[J]. Journal of Semiconductors, 2021, 42(4): 041306. doi: 10.1088/1674-4926/42/4/041306
****
J O Huang, C Li, R G Lu, L Y Li, Z Z Cao, Beyond the 100 Gbaud directly modulated laser for short reach applications[J]. J. Semicond., 2021, 42(4): 041306. doi: 10.1088/1674-4926/42/4/041306.
|
Beyond the 100 Gbaud directly modulated laser for short reach applications
doi: 10.1088/1674-4926/42/4/041306
More Information-
Abstract
It is very attractive to apply a directly modulated laser (DML)-based intensity-modulation and direct-detection (IM/DD) system in future data centers and 5G fronthaul networks due to the advantages of low cost, low system complexity, and high energy efficiency, which perfectly match the application scenarios of the data centers and 5G fronthaul networks, in which a large number of high-speed optical interconnections are needed. However, as the data traffic in the data centers and 5G fronthaul networks continues to grow exponentially, the future requirements for data rates beyond 100 Gbaud are challenging the existing DML-based IM/DD system, and the main bottleneck is the modulation bandwidth of the DML. In this paper, the data rate demands and technical standards of the data centers and 5G fronthaul networks are reviewed in detail. With the modulation bandwidth requirements, the technical routes and achievements of recent DMLs are reviewed and discussed. In this way, the prospects, challenges, and future development of DMLs in the applications of future data centers and 5G fronthaul networks are comprehensively explored.-
Keywords:
- directly modulated laser,
- data center,
- 5G fronthaul network
-
References
[1] Keiser G. Optical fiber communications. Wiley Encyclopedia of Telecommunications, 2003[2] Winzer P J. Beyond 100G Ethernet. IEEE Commun Mag, 2010, 48, 26[3] Cole C. Beyond 100G client optics. IEEE Commun Mag, 2012, 50, s58 doi: 10.1109/MCOM.2012.6146486[4] Pang X D, Ozolins O, Lin R, et al. 200 Gbps/lane IM/DD technologies for short reach optical interconnects. J Lightwave Technol, 2020, 38, 492 doi: 10.1109/JLT.2019.2962322[5] Kachris C, Kanonakis K, Tomkos I. Optical interconnection networks in data centers: Recent trends and future challenges. IEEE Commun Mag, 2013, 51, 39 doi: 10.1109/MCOM.2013.6588648[6] Agrell E, Karlsson M, Chraplyvy A R, et al. Roadmap of optical communications. J Opt, 2016, 18, 063002 doi: 10.1088/2040-8978/18/6/063002[7] 100G Lambda MSA Group. 400G BiDi multi-source agreement. http://100glambda.com/specifications/send/2-specifications/7-400g-fr4-technical-spec-d2p0[8] 100G Lambda MSA. 100G lambda multi-source agreement specifications. http://100glambda.com/specifications/send/2-specifications/9-100g-fr-and-100g-lr-technical-specs-d2p0-2[9] De La Oliva A, Perez X C, Azcorra A, et al. Xhaul: toward an integrated fronthaul/backhaul architecture in 5G networks. IEEE Wirel Commun, 2015, 22, 32 doi: 10.1109/MWC.2015.7306535[10] Tucker R S. High-speed modulation of semiconductor lasers. IEEE Trans Electron Devices, 1985, 32, 2572 doi: 10.1109/T-ED.1985.22387[11] Zhu N, Shi Z, Zhang Z, et al. Directly modulated semiconductor lasers. IEEE J Sel Top Quantum Electron, 2018, 24, 1 doi: 10.1109/JSTQE.2017.2720959[12] Takahata K, Fujisawa T, Kanazawa S, et al. 1.3-μm, 4 × 25G, EADFB laser array module for compact 10-km 100GbE transceivers. IEEE Photonic Society 24th Annual Meeting, 2011, 208[13] Peucheret C. Direct and external modulation of light. Experimental Course in Optical Communication, 2009[14] Tadokoro T, Kobayashi W, Fujisawa T, et al. 43 Gb/s 1.3 μm DFB laser for 40 km transmission. J Lightwave Technol, 2012, 30, 2520 doi: 10.1109/JLT.2012.2203095[15] Shen C C, Hsu T C, Yeh Y W, et al. Design, modeling, and fabrication of high-speed VCSEL with data rate up to 50 Gb/S. Nanoscale Res Lett, 2019, 14, 1 doi: 10.1186/s11671-018-2843-4[16] Yamaoka S, Diamantopoulos N P, Nishi H, et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nat Photonics, 2021, 15, 28 doi: 10.1038/s41566-020-00700-y[17] Che D, Matsui Y, Chen X, et al. 400-Gb/s direct modulation using a DFB+R laser. Opt Lett, 2020, 45, 3337 doi: 10.1364/OL.392873[18] Pfeiffer T. Next generation mobile fronthaul and midhaul architectures. J Opt Commun Netw, 2015, 7, B38 doi: 10.1364/JOCN.7.000B38[19] CPRI. eCPRI interface specification [EB/OL]. http://www.cpri.info/spec.html[20] Coldren L A, Corzine S W, Mašanović M L. Diode lasers and photonic integrated circuits. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012[21] Ralston J D, Weisser S, Esquivias I, et al. Control of differential gain, nonlinear gain and damping factor for high-speed application of GaAs-based MQW lasers. IEEE J Quantum Electron, 1993, 29, 1648 doi: 10.1109/3.234417[22] Ralston J D, Weisser S, Eisele K, et al. Low-bias-current direct modulation up to 33 GHz in InGaAs/GaAs/AlGaAs pseudomorphic MQW ridge-waveguide lasers. IEEE Photonics Technol Lett, 1994, 6, 1076 doi: 10.1109/68.324673[23] Weisser S, Larkins E C, Czotscher K, et al. 37 GHz direct modulation bandwidth in short-cavity InGaAs/GaAs MQW lasers with C-doped active regions. IEEE Lasers and Electro-Optics Society 1995 Annual Meeting 8th Annual Meeting Conference Proceedings, 1995, 91[24] Weisser S, Larkins E C, Czotscher K, et al. Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers. IEEE Photonics Technol Lett, 1996, 8, 608 doi: 10.1109/68.491554[25] Matsui Y, Murai H, Arahira S, et al. 30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser. IEEE Photonics Technol Lett, 1997, 9, 25 doi: 10.1109/68.554159[26] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III–V compound semiconductors and their alloys. J Appl Phys, 2001, 89, 5815 doi: 10.1063/1.1368156[27] Otsubo K, Matsuda M, Takada K, et al. 1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation. IEEE J Sel Top Quantum Electron, 2009, 15, 687 doi: 10.1109/JSTQE.2009.2015194[28] Fukamachi T, Adachi K, Shinoda K, et al. Wide temperature range operation of 25-Gb/s 1.3-μm InGaAlAs directly modulated lasers. IEEE J Sel Top Quantum Electron, 2011, 17, 1138 doi: 10.1109/JSTQE.2011.2114644[29] Simoyama T, Matsuda M, Okumura S, et al. 40-Gbps transmission using direct modulation of 1.3-μm AlGaInAs MQW distributed-reflector lasers up to 70 °C. Optical Fiber Communication Conference, 2011, OWD3[30] Kobayashi W, Ito T, Yamanaka T, et al. 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J Sel Top Quantum Electron, 2013, 19, 1500908 doi: 10.1109/JSTQE.2013.2238509[31] Matsuda M, Uetake A, Simoyama T, et al. 1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate. IEEE J Sel Top Quantum Electron, 2015, 21, 241 doi: 10.1109/JSTQE.2015.2425145[32] Kjebon O, Schatz R, Lourdudoss S, et al. Two-section InGaAsP DBR-lasers at 1.55 μm wavelength with 31 GHz direct modulation bandwidth. 1997 International Conference on Indium Phosphide and Related Materials, 1997, 665[33] Reithmaier J P, Kaiser W, Bach L, et al. Modulation speed enhancement by coupling to higher order resonances: A road towards 40 GHz bandwidth lasers on InP. International Conference on Indium Phosphide and Related Materials, 2005, 118[34] Radziunas M, Glitzky A, Bandelow U, et al. Improving the modulation bandwidth in semiconductor lasers by passive feedback. IEEE J Sel Top Quantum Electron, 2007, 13, 136 doi: 10.1109/JSTQE.2006.885332[35] Troppenz U, Kreissl J, Möhrle M, et al. 40 Gbit/s directly modulated lasers: Physics and application. Proc SPIE, 2011, 7953, 79530F[36] Kreissl J, Vercesi V, Troppenz U, et al. Up to 40 Gb/s directly modulated laser operating at low driving current: Buried-heterostructure passive feedback laser (BH-PFL). IEEE Photonics Technol Lett, 2012, 24, 362 doi: 10.1109/LPT.2011.2179530[37] Mieda S, Yokota N, Kobayashi W, et al. Ultra-wide-bandwidth optically controlled DFB laser with external cavity. IEEE J Quantum Electron, 2016, 52, 1 doi: 10.1109/JQE.2016.2557489[38] Matsui Y, Schatz R, Pham T, et al. 55 GHz bandwidth distributed reflector laser. J Lightwave Technol, 2017, 35, 397 doi: 10.1109/JLT.2017.2650678[39] Liu G H, Zhao G Y, Sun J Q, et al. Experimental demonstration of DFB lasers with active distributed reflector. Opt Express, 2018, 26, 29784 doi: 10.1364/OE.26.029784[40] Matsui Y, Schatz R, Che D, et al. Isolator-free > 67-GHz bandwidth DFB+R laser with suppressed chirp. 2020 Optical Fiber Communications Conference and Exhibition (OFC), 2020, 1[41] Feiste U. Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors. IEEE J Quantum Electron, 1998, 34, 2371 doi: 10.1109/3.736110[42] Bardella P, Montrosset I. A new design procedure for DBR lasers exploiting the photon–photon resonance to achieve extended modulation bandwidth. IEEE J Sel Top Quantum Electron, 2013, 19, 1502408 doi: 10.1109/JSTQE.2013.2250260[43] Morthier G, Schatz R, Kjebon O. Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization. IEEE J Quantum Electron, 2000, 36, 1468 doi: 10.1109/3.892568[44] Vahala K, Yariv A. Detuned loading in coupled cavity semiconductor lasers — effect on quantum noise and dynamics. Appl Phys Lett, 1984, 45, 501 doi: 10.1063/1.95316[45] Vahala K, Paslaski J, Yariv A. Observation of modulation speed enhancement, frequency modulation suppression, and phase noise reduction by detuned loading in a coupled-cavity semiconductor laser. Appl Phys Lett, 1985, 46, 1025 doi: 10.1063/1.95799[46] Chaciński M, Schatz R. Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers. IEEE J Quantum Electron, 2010, 46, 1360 doi: 10.1109/JQE.2010.2048013[47] Zhang L, van Kerrebrouck J, Lin R, et al. Nonlinearity tolerant high-speed DMT transmission with 1.5-μm single-mode VCSEL and multi-core fibers for optical interconnects. J Lightwave Technol, 2019, 37, 380 doi: 10.1109/JLT.2018.2851746[48] Zhang L, Chen J J, Agrell E, et al. Enabling technologies for optical data center networks: Spatial division multiplexing. J Lightwave Technol, 2020, 38, 18 doi: 10.1109/JLT.2019.2941765[49] van Kerrebrouck J, Pang X D, Ozolins O, et al. High-speed PAM4-based optical sdm interconnects with directly modulated Long-wavelength vcsel. arXiv: 1812.05536, 2018[50] Kanazawa S, Yamazaki H, Nakanishi Y, et al. Transmission of 214-Gbit/s 4-PAM signal using an ultra-broadband lumped-electrode EADFB laser module. 2016 Opt Fiber Commun Conf Exhib OFC, 2016, 1[51] Kanazawa S, Yamazaki H, Nakanishi Y, et al. 214-gb/s 4-PAM operation of flip-chip interconnection EADFB laser module. J Lightwave Technol, 2017, 35, 418 doi: 10.1109/JLT.2016.2632164[52] Yamazaki H, Nagatani M, Hamaoka F, et al., 300-Gbps discrete multi-tone transmission using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image. 42nd European Conference on Optical Communication, 2016, 1[53] Yamazaki H, Nagatani M, Hamaoka F, et al. Discrete multitone transmission at net data rate of 250 Gb/s using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image. J Lightwave Technol, 2017, 35, 1300 doi: 10.1109/JLT.2017.2650205[54] Mardoyan H, Mestre M A, Estarán J M, et al. 84-, 100-, and 107-GBd PAM-4 intensity-modulation direct-detection transceiver for datacenter interconnects. J Lightwave Technol, 2017, 35, 1253 doi: 10.1109/JLT.2016.2646327[55] Ozolins O, Pang X D, Udalcovs A, et al. 100 Gbaud 4PAM link for high speed optical interconnects. 2017 European Conference on Optical Communication (ECOC), 2017, 1[56] Hong X Z, Zhang L, Pang X D, et al. 200-Gbps DMT transmission over 1.6-km SSMF with a single EML/DAC/PD for optical interconnects at C-band. 2017 European Conference on Optical Communication (ECOC), 2017, 1[57] Lange S, Wolf S, Lutz J, et al. 100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach–Zehnder modulator. J Lightwave Technol, 2018, 36, 97 doi: 10.1109/JLT.2017.2743211[58] Mardoyan H, Jorge F, Ozolins O, et al. 204-GBaud on-off keying transmitter for inter-data center communications. Optical Fiber Communication Conference, 2018, Th4A.4[59] Zhang L, Wei J L, Stojanovic N, et al. Beyond 200-Gb/s DMT transmission over 2-km SMF based on a low-cost architecture with single-wavelength, single-DAC/ADC and single-PD. 2018 European Conference on Optical Communication (ECOC), 2018, 1[60] Stojanovic N, Prodaniuc C, Zhang L, et al. 210/225 Gbit/s PAM-6 transmission with BER below KP4-FEC/EFEC and at least 14 dB link budget. 2018 European Conference on Optical Communication (ECOC), 2018, 1[61] Zhang L, Hong X Z, Pang X D, et al. Nonlinearity-aware 200 Gbit/s DMT transmission for C-band short-reach optical interconnects with a single packaged electro-absorption modulated laser. Opt Lett, 2018, 43, 182 doi: 10.1364/OL.43.000182[62] Zhang L, Chen J J, Udalcovs A, et al. Lattice pilot aided DMT transmission for optical interconnects achieving 5.820-bits/Hz per lane. 45th European Conference on Optical Communication (ECOC 2019), 2019, 1[63] Estaran J M, Mardoyan H, Jorge F, et al. 140/180/204-Gbaud OOK transceiver for inter-and intra-data center connectivity. J Lightwave Technol, 2019, 37, 178 doi: 10.1109/JLT.2018.2876732[64] Buchali F, Schuh K, Le S T, et al. A SiGe HBT BiCMOS 1-to-4 ADC frontend supporting 100 GBaud PAM4 reception at 14 GHz digitizer bandwidth. Optical Fiber Communication Conference, 2019, 1[65] Ummethala S, Ummethala S, Kemal J N, et al. Capacitively coupled silicon-organic hybrid modulator for 200 Gbit/s PAM-4 signaling. 2019, JTh5B.2[66] Zhang F, Zhu Y, Yang F, et al. Up to single lane 200G optical interconnects with silicon photonic modulator. 2019 Optical Fiber Communications Conference and Exhibition (OFC) 2019, 1[67] Prodaniuc C, Stojanovic N, Xie C S, et al. 3-Dimensional PAM-8 modulation for 200 Gbps/lambda optical systems. Opt Commun, 2019, 435, 1 doi: 10.1016/j.optcom.2018.10.046[68] Zhang J, Yu J J, Zhao L, et al. Demonstration of 260-Gb/s single-lane EML-based PS-PAM-8 IM/DD for datacenter interconnects. Optical Fiber Communication Conference (OFC), 2019, 1[69] Masuda A, Yamamoto S, Taniguchi H, et al. 255-Gbps PAM-8 transmission under 20-GHz bandwidth limitation using NL-MLSE based on volterra filter. Optical Fiber Communication Conference (OFC), 2019, W4I.6[70] Li F, Li Z B, Sui Q, et al. 200 Gbit/s (68.25 Gbaud) PAM8 signal transmission and reception for intra-data center interconnect. Optical Fiber Communication Conference (OFC), 2019, 1[71] Diamantopoulos N P, Yamazaki H, Yamaoka S, et al. Net 321.24-Gb/s IMDD transmission Based on a >100-GHz bandwidth directly-modulated laser. Optical Fiber Communication Conference, 2020, Th4C.1[72] Chaciński M, Westergren U, Stoltz B, et al. Monolithically integrated 100 GHz DFB-TWEAM. J Lightwave Technol, 2009, 27, 3410 doi: 10.1109/JLT.2009.2015773[73] Yamaoka S, Diamantopoulos N P, Nishi H, et al. 239.3-Gbit/s net rate PAM-4 transmission using directly modulated membrane lasers on high-thermal-conductivity SiC. 45th European Conference on Optical Communication (ECOC 2019), 2019, 1 -
Proportional views