REVIEWS

Beyond the 100 Gbaud directly modulated laser for short reach applications

Jianou Huang1, Chao Li1, Rongguo Lu2, Lianyan Li3 and Zizheng Cao1,

+ Author Affiliations

 Corresponding author: Zizheng Cao, z.cao@tue.nl

PDF

Turn off MathJax

Abstract: It is very attractive to apply a directly modulated laser (DML)-based intensity-modulation and direct-detection (IM/DD) system in future data centers and 5G fronthaul networks due to the advantages of low cost, low system complexity, and high energy efficiency, which perfectly match the application scenarios of the data centers and 5G fronthaul networks, in which a large number of high-speed optical interconnections are needed. However, as the data traffic in the data centers and 5G fronthaul networks continues to grow exponentially, the future requirements for data rates beyond 100 Gbaud are challenging the existing DML-based IM/DD system, and the main bottleneck is the modulation bandwidth of the DML. In this paper, the data rate demands and technical standards of the data centers and 5G fronthaul networks are reviewed in detail. With the modulation bandwidth requirements, the technical routes and achievements of recent DMLs are reviewed and discussed. In this way, the prospects, challenges, and future development of DMLs in the applications of future data centers and 5G fronthaul networks are comprehensively explored.

Key words: directly modulated laserdata center5G fronthaul network



[1]
Keiser G. Optical fiber communications. Wiley Encyclopedia of Telecommunications, 2003
[2]
Winzer P J. Beyond 100G Ethernet. IEEE Commun Mag, 2010, 48, 26
[3]
Cole C. Beyond 100G client optics. IEEE Commun Mag, 2012, 50, s58 doi: 10.1109/MCOM.2012.6146486
[4]
Pang X D, Ozolins O, Lin R, et al. 200 Gbps/lane IM/DD technologies for short reach optical interconnects. J Lightwave Technol, 2020, 38, 492 doi: 10.1109/JLT.2019.2962322
[5]
Kachris C, Kanonakis K, Tomkos I. Optical interconnection networks in data centers: Recent trends and future challenges. IEEE Commun Mag, 2013, 51, 39 doi: 10.1109/MCOM.2013.6588648
[6]
Agrell E, Karlsson M, Chraplyvy A R, et al. Roadmap of optical communications. J Opt, 2016, 18, 063002 doi: 10.1088/2040-8978/18/6/063002
[7]
[8]
[9]
De La Oliva A, Perez X C, Azcorra A, et al. Xhaul: toward an integrated fronthaul/backhaul architecture in 5G networks. IEEE Wirel Commun, 2015, 22, 32 doi: 10.1109/MWC.2015.7306535
[10]
Tucker R S. High-speed modulation of semiconductor lasers. IEEE Trans Electron Devices, 1985, 32, 2572 doi: 10.1109/T-ED.1985.22387
[11]
Zhu N, Shi Z, Zhang Z, et al. Directly modulated semiconductor lasers. IEEE J Sel Top Quantum Electron, 2018, 24, 1 doi: 10.1109/JSTQE.2017.2720959
[12]
Takahata K, Fujisawa T, Kanazawa S, et al. 1.3-μm, 4 × 25G, EADFB laser array module for compact 10-km 100GbE transceivers. IEEE Photonic Society 24th Annual Meeting, 2011, 208
[13]
Peucheret C. Direct and external modulation of light. Experimental Course in Optical Communication, 2009
[14]
Tadokoro T, Kobayashi W, Fujisawa T, et al. 43 Gb/s 1.3 μm DFB laser for 40 km transmission. J Lightwave Technol, 2012, 30, 2520 doi: 10.1109/JLT.2012.2203095
[15]
Shen C C, Hsu T C, Yeh Y W, et al. Design, modeling, and fabrication of high-speed VCSEL with data rate up to 50 Gb/S. Nanoscale Res Lett, 2019, 14, 1 doi: 10.1186/s11671-018-2843-4
[16]
Yamaoka S, Diamantopoulos N P, Nishi H, et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nat Photonics, 2021, 15, 28 doi: 10.1038/s41566-020-00700-y
[17]
Che D, Matsui Y, Chen X, et al. 400-Gb/s direct modulation using a DFB+R laser. Opt Lett, 2020, 45, 3337 doi: 10.1364/OL.392873
[18]
Pfeiffer T. Next generation mobile fronthaul and midhaul architectures. J Opt Commun Netw, 2015, 7, B38 doi: 10.1364/JOCN.7.000B38
[19]
CPRI. eCPRI interface specification [EB/OL]. http://www.cpri.info/spec.html
[20]
Coldren L A, Corzine S W, Mašanović M L. Diode lasers and photonic integrated circuits. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012
[21]
Ralston J D, Weisser S, Esquivias I, et al. Control of differential gain, nonlinear gain and damping factor for high-speed application of GaAs-based MQW lasers. IEEE J Quantum Electron, 1993, 29, 1648 doi: 10.1109/3.234417
[22]
Ralston J D, Weisser S, Eisele K, et al. Low-bias-current direct modulation up to 33 GHz in InGaAs/GaAs/AlGaAs pseudomorphic MQW ridge-waveguide lasers. IEEE Photonics Technol Lett, 1994, 6, 1076 doi: 10.1109/68.324673
[23]
Weisser S, Larkins E C, Czotscher K, et al. 37 GHz direct modulation bandwidth in short-cavity InGaAs/GaAs MQW lasers with C-doped active regions. IEEE Lasers and Electro-Optics Society 1995 Annual Meeting 8th Annual Meeting Conference Proceedings, 1995, 91
[24]
Weisser S, Larkins E C, Czotscher K, et al. Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers. IEEE Photonics Technol Lett, 1996, 8, 608 doi: 10.1109/68.491554
[25]
Matsui Y, Murai H, Arahira S, et al. 30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser. IEEE Photonics Technol Lett, 1997, 9, 25 doi: 10.1109/68.554159
[26]
Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III–V compound semiconductors and their alloys. J Appl Phys, 2001, 89, 5815 doi: 10.1063/1.1368156
[27]
Otsubo K, Matsuda M, Takada K, et al. 1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation. IEEE J Sel Top Quantum Electron, 2009, 15, 687 doi: 10.1109/JSTQE.2009.2015194
[28]
Fukamachi T, Adachi K, Shinoda K, et al. Wide temperature range operation of 25-Gb/s 1.3-μm InGaAlAs directly modulated lasers. IEEE J Sel Top Quantum Electron, 2011, 17, 1138 doi: 10.1109/JSTQE.2011.2114644
[29]
Simoyama T, Matsuda M, Okumura S, et al. 40-Gbps transmission using direct modulation of 1.3-μm AlGaInAs MQW distributed-reflector lasers up to 70 °C. Optical Fiber Communication Conference, 2011, OWD3
[30]
Kobayashi W, Ito T, Yamanaka T, et al. 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J Sel Top Quantum Electron, 2013, 19, 1500908 doi: 10.1109/JSTQE.2013.2238509
[31]
Matsuda M, Uetake A, Simoyama T, et al. 1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate. IEEE J Sel Top Quantum Electron, 2015, 21, 241 doi: 10.1109/JSTQE.2015.2425145
[32]
Kjebon O, Schatz R, Lourdudoss S, et al. Two-section InGaAsP DBR-lasers at 1.55 μm wavelength with 31 GHz direct modulation bandwidth. 1997 International Conference on Indium Phosphide and Related Materials, 1997, 665
[33]
Reithmaier J P, Kaiser W, Bach L, et al. Modulation speed enhancement by coupling to higher order resonances: A road towards 40 GHz bandwidth lasers on InP. International Conference on Indium Phosphide and Related Materials, 2005, 118
[34]
Radziunas M, Glitzky A, Bandelow U, et al. Improving the modulation bandwidth in semiconductor lasers by passive feedback. IEEE J Sel Top Quantum Electron, 2007, 13, 136 doi: 10.1109/JSTQE.2006.885332
[35]
Troppenz U, Kreissl J, Möhrle M, et al. 40 Gbit/s directly modulated lasers: Physics and application. Proc SPIE, 2011, 7953, 79530F
[36]
Kreissl J, Vercesi V, Troppenz U, et al. Up to 40 Gb/s directly modulated laser operating at low driving current: Buried-heterostructure passive feedback laser (BH-PFL). IEEE Photonics Technol Lett, 2012, 24, 362 doi: 10.1109/LPT.2011.2179530
[37]
Mieda S, Yokota N, Kobayashi W, et al. Ultra-wide-bandwidth optically controlled DFB laser with external cavity. IEEE J Quantum Electron, 2016, 52, 1 doi: 10.1109/JQE.2016.2557489
[38]
Matsui Y, Schatz R, Pham T, et al. 55 GHz bandwidth distributed reflector laser. J Lightwave Technol, 2017, 35, 397 doi: 10.1109/JLT.2017.2650678
[39]
Liu G H, Zhao G Y, Sun J Q, et al. Experimental demonstration of DFB lasers with active distributed reflector. Opt Express, 2018, 26, 29784 doi: 10.1364/OE.26.029784
[40]
Matsui Y, Schatz R, Che D, et al. Isolator-free > 67-GHz bandwidth DFB+R laser with suppressed chirp. 2020 Optical Fiber Communications Conference and Exhibition (OFC), 2020, 1
[41]
Feiste U. Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors. IEEE J Quantum Electron, 1998, 34, 2371 doi: 10.1109/3.736110
[42]
Bardella P, Montrosset I. A new design procedure for DBR lasers exploiting the photon–photon resonance to achieve extended modulation bandwidth. IEEE J Sel Top Quantum Electron, 2013, 19, 1502408 doi: 10.1109/JSTQE.2013.2250260
[43]
Morthier G, Schatz R, Kjebon O. Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization. IEEE J Quantum Electron, 2000, 36, 1468 doi: 10.1109/3.892568
[44]
Vahala K, Yariv A. Detuned loading in coupled cavity semiconductor lasers — effect on quantum noise and dynamics. Appl Phys Lett, 1984, 45, 501 doi: 10.1063/1.95316
[45]
Vahala K, Paslaski J, Yariv A. Observation of modulation speed enhancement, frequency modulation suppression, and phase noise reduction by detuned loading in a coupled-cavity semiconductor laser. Appl Phys Lett, 1985, 46, 1025 doi: 10.1063/1.95799
[46]
Chaciński M, Schatz R. Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers. IEEE J Quantum Electron, 2010, 46, 1360 doi: 10.1109/JQE.2010.2048013
[47]
Zhang L, van Kerrebrouck J, Lin R, et al. Nonlinearity tolerant high-speed DMT transmission with 1.5-μm single-mode VCSEL and multi-core fibers for optical interconnects. J Lightwave Technol, 2019, 37, 380 doi: 10.1109/JLT.2018.2851746
[48]
Zhang L, Chen J J, Agrell E, et al. Enabling technologies for optical data center networks: Spatial division multiplexing. J Lightwave Technol, 2020, 38, 18 doi: 10.1109/JLT.2019.2941765
[49]
van Kerrebrouck J, Pang X D, Ozolins O, et al. High-speed PAM4-based optical sdm interconnects with directly modulated Long-wavelength vcsel. arXiv: 1812.05536, 2018
[50]
Kanazawa S, Yamazaki H, Nakanishi Y, et al. Transmission of 214-Gbit/s 4-PAM signal using an ultra-broadband lumped-electrode EADFB laser module. 2016 Opt Fiber Commun Conf Exhib OFC, 2016, 1
[51]
Kanazawa S, Yamazaki H, Nakanishi Y, et al. 214-gb/s 4-PAM operation of flip-chip interconnection EADFB laser module. J Lightwave Technol, 2017, 35, 418 doi: 10.1109/JLT.2016.2632164
[52]
Yamazaki H, Nagatani M, Hamaoka F, et al., 300-Gbps discrete multi-tone transmission using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image. 42nd European Conference on Optical Communication, 2016, 1
[53]
Yamazaki H, Nagatani M, Hamaoka F, et al. Discrete multitone transmission at net data rate of 250 Gb/s using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image. J Lightwave Technol, 2017, 35, 1300 doi: 10.1109/JLT.2017.2650205
[54]
Mardoyan H, Mestre M A, Estarán J M, et al. 84-, 100-, and 107-GBd PAM-4 intensity-modulation direct-detection transceiver for datacenter interconnects. J Lightwave Technol, 2017, 35, 1253 doi: 10.1109/JLT.2016.2646327
[55]
Ozolins O, Pang X D, Udalcovs A, et al. 100 Gbaud 4PAM link for high speed optical interconnects. 2017 European Conference on Optical Communication (ECOC), 2017, 1
[56]
Hong X Z, Zhang L, Pang X D, et al. 200-Gbps DMT transmission over 1.6-km SSMF with a single EML/DAC/PD for optical interconnects at C-band. 2017 European Conference on Optical Communication (ECOC), 2017, 1
[57]
Lange S, Wolf S, Lutz J, et al. 100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach–Zehnder modulator. J Lightwave Technol, 2018, 36, 97 doi: 10.1109/JLT.2017.2743211
[58]
Mardoyan H, Jorge F, Ozolins O, et al. 204-GBaud on-off keying transmitter for inter-data center communications. Optical Fiber Communication Conference, 2018, Th4A.4
[59]
Zhang L, Wei J L, Stojanovic N, et al. Beyond 200-Gb/s DMT transmission over 2-km SMF based on a low-cost architecture with single-wavelength, single-DAC/ADC and single-PD. 2018 European Conference on Optical Communication (ECOC), 2018, 1
[60]
Stojanovic N, Prodaniuc C, Zhang L, et al. 210/225 Gbit/s PAM-6 transmission with BER below KP4-FEC/EFEC and at least 14 dB link budget. 2018 European Conference on Optical Communication (ECOC), 2018, 1
[61]
Zhang L, Hong X Z, Pang X D, et al. Nonlinearity-aware 200 Gbit/s DMT transmission for C-band short-reach optical interconnects with a single packaged electro-absorption modulated laser. Opt Lett, 2018, 43, 182 doi: 10.1364/OL.43.000182
[62]
Zhang L, Chen J J, Udalcovs A, et al. Lattice pilot aided DMT transmission for optical interconnects achieving 5.820-bits/Hz per lane. 45th European Conference on Optical Communication (ECOC 2019), 2019, 1
[63]
Estaran J M, Mardoyan H, Jorge F, et al. 140/180/204-Gbaud OOK transceiver for inter-and intra-data center connectivity. J Lightwave Technol, 2019, 37, 178 doi: 10.1109/JLT.2018.2876732
[64]
Buchali F, Schuh K, Le S T, et al. A SiGe HBT BiCMOS 1-to-4 ADC frontend supporting 100 GBaud PAM4 reception at 14 GHz digitizer bandwidth. Optical Fiber Communication Conference, 2019, 1
[65]
Ummethala S, Ummethala S, Kemal J N, et al. Capacitively coupled silicon-organic hybrid modulator for 200 Gbit/s PAM-4 signaling. 2019, JTh5B.2
[66]
Zhang F, Zhu Y, Yang F, et al. Up to single lane 200G optical interconnects with silicon photonic modulator. 2019 Optical Fiber Communications Conference and Exhibition (OFC) 2019, 1
[67]
Prodaniuc C, Stojanovic N, Xie C S, et al. 3-Dimensional PAM-8 modulation for 200 Gbps/lambda optical systems. Opt Commun, 2019, 435, 1 doi: 10.1016/j.optcom.2018.10.046
[68]
Zhang J, Yu J J, Zhao L, et al. Demonstration of 260-Gb/s single-lane EML-based PS-PAM-8 IM/DD for datacenter interconnects. Optical Fiber Communication Conference (OFC), 2019, 1
[69]
Masuda A, Yamamoto S, Taniguchi H, et al. 255-Gbps PAM-8 transmission under 20-GHz bandwidth limitation using NL-MLSE based on volterra filter. Optical Fiber Communication Conference (OFC), 2019, W4I.6
[70]
Li F, Li Z B, Sui Q, et al. 200 Gbit/s (68.25 Gbaud) PAM8 signal transmission and reception for intra-data center interconnect. Optical Fiber Communication Conference (OFC), 2019, 1
[71]
Diamantopoulos N P, Yamazaki H, Yamaoka S, et al. Net 321.24-Gb/s IMDD transmission Based on a >100-GHz bandwidth directly-modulated laser. Optical Fiber Communication Conference, 2020, Th4C.1
[72]
Chaciński M, Westergren U, Stoltz B, et al. Monolithically integrated 100 GHz DFB-TWEAM. J Lightwave Technol, 2009, 27, 3410 doi: 10.1109/JLT.2009.2015773
[73]
Yamaoka S, Diamantopoulos N P, Nishi H, et al. 239.3-Gbit/s net rate PAM-4 transmission using directly modulated membrane lasers on high-thermal-conductivity SiC. 45th European Conference on Optical Communication (ECOC 2019), 2019, 1
Fig. 1.  (Color online) A typical fiber-optic communication network for the core, metro and access network scenarios, where the IM/DD links are addressed in the metroedge and intra-/inter-data center networks. CO: center office; RN: remote node; DCI: datacenter interconnects. © [2020] IEEE. Reprinted, with permission, from Ref. [4].

Fig. 2.  (Color online) A schematic diagram of the IM/DD system based on DML. DSP: digital signal processing; DAC: digital-to-analog convertor; LDD: laser diode driver; DML: directly modulated laser; SMF: single mode fiber; MMF: multi-mode fiber; ADC: analog-to-digital convertor.

Fig. 3.  Model used in the rate equation analysis of semiconductor lasers. Copyright © 2012 John Wiley & Sons, Inc. Reprinted, with permission, from Ref. [20].

Fig. 4.  (Color online) The sketch of the modulation transfer function for increasing values of relaxation resonance frequency $ f_{\rm{R}} $ (normalized to $ f_{\rm{d}} $). Including relationships between the peak frequency $ f_{\rm{p}} $, the resonance frequency $ f_{\rm{R}} $, and the 3-dB down cutoff frequency $ f_{\mathrm{dB}} $.

Fig. 5.  (Color online) Schematics of different types of coupled-cavity lasers. (a) Two-section DBR laser. © [1998] IEEE. Reprinted, with permission, from Ref. [41]. (b) Passive feedback laser. © (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Reprinted, with permission, from Ref. [35]. (c) DFB+R laser. Reprinted with permission from Ref. [17] © The Optical Society. (d) DR laser. © [2017] IEEE. Reprinted, with permission, from Ref. [38]. HR: high-reflection coating, 3%: 3%-reflection coating, AR: anti-reflection coating.

Fig. 6.  (Color online) (a) Example of the detuned loading and PPR in a two-section DBR laser: round trip gain (blue curve) and phase (red dashed curve) function at the DBR threshold. The squared red marker represents the lasing mode; the blue markers indicate nonlasing cavity modes. The green asterisks on the reflectivity curve represent the modes locations in the maximum detuned loading condition. © [2013] IEEE. Reprinted, with permission, from Ref. [42]. (b) Example of the detuned loading in a DFB+R laser: in-cavity etalon profile for DFB+R with 3% coating (red), passive feedback laser (PFL) with HR coating (black), and the stopband of the DFB section (blue). Reprinted with the permission from the authors of Ref. [40].

Fig. 7.  (Color online) (a) Measured lasing spectrum at 27 mA with using PPR. (b) Measured small-signal responses of the laser at various bias currents, with using PPR. (c) Measured lasing spectrum at 27 mA without using PPR. (d) Measured small-signal responses of the laser at various bias currents, without using PPR. The laser has a 50-μm-long active section, and the response of –3 dB is marked by a dashed horizontal grey line. Reprinted by permission from Springer Nature, Nature Photonics[16], 2021.

Table 1.   High-speed optical interface standards.

Standard Reach (m) Modulation scheme Baud rate (Gbaud)
400G BASE-SR16 100 NRZ 26.6
400G BASE-DR4 500 PAM4 53.1
400G BASE-FR8 2000 PAM4 26.6
400G BASE-LR8 10000 PAM4 26.6
200G BASE-SR4 100 PAM4 26.6
200G BASE-DR4 500 PAM4 26.6
200G BASE-FR4 2000 PAM4 26.6
200G BASE-LR4 10000 PAM4 26.6
100G BASE-SR10 70/100 NRZ 10.3
100G BASE-SR2 400 PAM4 26.6
100G BASE-DR 500 PAM4 53.1
100G BASE-SR4 70/100 NRZ 25.8
100G SWDM 400 NRZ 25.8
100G PSM4 500 NRZ 25.8
100G BASE-LR4 10000 NRZ 25.8
100G BASE-ER4 40000 NRZ 25.8
50G BASE-SR 100 PAM4 26.6
50G BASE-FR 2000 PAM4 26.6
50G BASE-LR 10000 PAM4 26.6
DownLoad: CSV

Table 2.   Optical modules for 5G fronthaul.

Data rate (Gb/s) Reach (km) Scheme Package
25 0.3 Duplex SFP28
25 10 Duplex SFP28
25 10 Bidi SFP28
25 15/20 Bidi SFP28
25 10 CWDM SFP28
25 10 MWDM SFP28
25 10/20 LWDM SFP28
25 10 DWDM SFP28
100 10 4WDM QSFP28
100 10 Bidi QSFP28/CFP28
DownLoad: CSV

Table 3.   The meaning of the symbols in the rate equations.

Symbol Meaning
$V$ Active-region volume
$V_{\rm p}$ Mode volume
$\varGamma$ Confinement factor
$R_{\rm{sp}}$ Spontaneous recombination rate
$R_{\rm{nr}}$ Nonradiative recombination rate
$R_{\rm 12}$ Stimulated absorption rate
$R_{\rm 21}$ Stimulated emission rate
$\beta_{\rm{sp}}$ Spontaneous emission factor
$\eta_{\rm i}$ Injection or internal efficiency of the laser
$\eta_{\rm 0}$ Optical efficiency of the laser
$I$ Injection current
$q$ Elementary charge
$N$ Carrier density
$N_{\rm p}$ Photon density
$P_{\rm 0}$ Useful output power
$P_{\rm{sp}}$ Spontaneously generated optical power
$\tau_{\rm p}$ Photon lifetime
$v_{\rm g}$ Group velocity of the mode
$g$ Material gain
DownLoad: CSV

Table 4.   Reported stare-of-the-art works of DMLs.

No. Year Structural characteristics Modulation bandwidth Citation
1 1993 GaAs-based MQW laser, increased strain, p-doping and number of QWs, 200-μm short cavity 30 GHz @ 114 mA [21]
2 1994 GaAs-based MQW laser, low cladding layer growth temperature, 100-μm short cavity 33 GHz @ 65 mA [22]
3 1995 GaAs-based MQW laser, carbon doped active region, 130-μm short cavity 37 GHz @ 160 mA [23]
4 1996 GaAs-based MQW laser, asymetric cladding layer growth temperature, modified doping sequence, 130-μm short cavityx 40 GHz @ 155 mA [24]
5 1997 1.55-μm InGaAlAs-InGaAsP MQW laser with strain compensation, 120-μm short cavity 30 GHz @ 100 mA [25]
6 2009 1.3-μm InGaAlAs MQW semi-insulating buried-heterostructure DFB laser, 150-μm short cavity fR = 20.5 GHz @
~60 mA
[27]
7 2011 Uncooled 1.3-μm InGaAlAs MQW ridge waveguide DFB laser, 160-μm short cavity 14 GHz @ 95 °C 60 mA [28]
8 2011 1.3-μm InGaAlAs MQW semi-insulating buried-heterostructure DR laser,
100-μm short cavity
fR = 25 GHz @ 40 mA [29]
9 2012 1.3-μm InGaAlAs MQW ridge waveguide DFB laser with passive waveguide, 150-μm short cavity 30 GHz @ 45 mA [14]
10 2013 1.3-μm InGaAlAs-based MQW ridge waveguide DFB laser, 150-μm short cavity 34 GHz @ 60 mA [30]
11 2015 1.3-μm InGaAlAs MQW semi-insulating buried-heterostructure DR laser array, 125-μm short cavity 30 GHz @ 80 mA [31]
12 1997 1.55-μm two-section InGaAsP MQW DBR-laser, with detuned loading effect 30 GHz @ 130 mA [32]
13 2005 Three-section InGaAsP DBR laser, with detuned loading effect and PPR effect 37 GHz @ 172 mA [33]
14 2007 1.55-μm InGaAsP MQW passive-feedback DFB laser, with PPR effect 29 GHz @ 40 mA [34]
15 2011 1.3/1.5-μm InGaAsP MQW passive-feedback DFB laser, with PPR effect 37 GHz @ 70 mA [35]
16 2011 1.55-μm InGaAsP MQW passive-feedback DFB laser, with PPR effect 34 GHz @ 60 mA [36]
17 2016 1.55-μm InGaAlAs MQW optically controlled external cavity laser, with PPR effect 59 GHz [37]
18 2017 1.3-μm InGaAlAs MQW short-cavity DR laser, with detuned loading effect and PPR effect 55 GHz @ 36.2 mA [38]
19 2018 1.3-μm InGaAlAs MQW short-cavity active DR laser, with detuned loading effect 24 GHz @ 60 mA [39]
20 2020 1.3-μm InGaAlAs MQW lateral-current-injection membrane DR laser on SIC substrate, with detuned DBR and PPR effect 108 GHz @ 27 mA [16]
21 2020 1.3-μm DFB+R laser, with detuned loading effect and PPR effect 65 GHz [17]
22 2020 1.3-μm DFB+R laser, with detuned loading effect and PPR effect 75 GHz @ 65 mA [40]
DownLoad: CSV

Table 5.   Reported state-of-the-art works with beyond 200 Gb/s per channel IM/DD transmissions.

Year Modulation device Line rate (Gb/s) Modulation format Link Band (nm) FEC threshold DSP
2016[50, 51]* 59-GHz LE-TWEAM-DFB 214 PAM-4 10-km SMF 1305 3.8 × 10–3 FFE
2016[52, 53] 55-GHz EAMDFB 300 DMT 10-km SMF 1305 2.7 × 10–2 AMUX
2017[54] 40-GHz DFB+MZM 200 PAM-4 0.5-km SSMF 1545 3.8 × 10–3 MLSD
2017[55] 100-GHz DFB-TWEAM 200 PAM-4 0.4-km SMF 1550 2 × 102 DFE
2017[56] 100-GHz DFB-TWEAM 209/200 DMT 0.8-km SMF/
1.6-km SMF
1550 2.7 × 10–2 TD-NE
2018[57] 54-GHz DFB+MZM 200/300 PAM-4/PAM-8 1.2-km SMF 1550 3.8 × 10–3/
2.7 × 10–2
FDE
2018[58] 100-GHz DFB-TWEAM 204 OOK 10-km SMF+DCF 1550 3.8 × 10–3 FFE, MAP
2018[59] 30-GHz CW+MZM 224 DMT 1-km SMF C-band 3.8 × 10–3 NLE
2018[60] 32-GHz CW+MZM 225 DB PAM-6 btb C-band 3.8 × 10–3 NFFE, NC, MLSE
2018[61] 100-GHz DFB-TWEAM 200 DMT 1.6-km SSMF 1550 2.7 × 10–2 TD-NE
2019[62] 100-GHz DFB-TWEAM 330 DMT-128QAM 0.4-km SMF C-band 2.7 × 10–2 Lattice pilot algorithm for CE
2019[63] 100-GHz DFB-TWEAM 204 OOK 10-km SMF 1550 3.8 × 10–3 LFFE
2019[64] 40-GHz CW+MZM 200 PAM-4 40-km SMF 1550 3.8 × 10–3 Volterra
2019[65] 65-GHz ECL+CC-SOH MZM 200 PAM-4 btb 1550 2.7 × 10–2
2019[66] 22.5-GHz ECL+TW-MZM 200 PAM-6 btb 1547 2.7 × 10–2 PF, MLSD
2019[67] 30-GHz CW+MZM 240 3D DB PAM-8 btb 1551 3.8 × 10–3 3D mapping, Volterra
2019[68] 40-GHz EML 260 PS-PAM-8 1-km NZDSF 1538 2.7 × 10–2 Pre-EQ clipping
2019[69] 30-GHz CW+DDMZM 255 PAM-8 btb 1309 3.8 × 10–3 NL-MLSE
2019[70] 40-GHz EML 204.75 PAM-8 1-km SMF 1538 2.7 × 10–2 FFE, LUT, ANF
2020[4] 100-GHz DFB+TWEAM 200 PAM-4 0.4-km SMF 1550 2.7 × 10–2 FFE, DFE
2020[71] 100-GHz DML 321 DMT 2-km SMF 1295 2.7 × 10–2 Linear Wiener filter, Volterra
2020[17] 65-GHz DML 411/368 DMT 0/15-km SSMF 1313 2.7 × 10–2 LMS
* The first 200 Gb/s IM/DD transmission with a single-polarization single-wavelength.
DownLoad: CSV
[1]
Keiser G. Optical fiber communications. Wiley Encyclopedia of Telecommunications, 2003
[2]
Winzer P J. Beyond 100G Ethernet. IEEE Commun Mag, 2010, 48, 26
[3]
Cole C. Beyond 100G client optics. IEEE Commun Mag, 2012, 50, s58 doi: 10.1109/MCOM.2012.6146486
[4]
Pang X D, Ozolins O, Lin R, et al. 200 Gbps/lane IM/DD technologies for short reach optical interconnects. J Lightwave Technol, 2020, 38, 492 doi: 10.1109/JLT.2019.2962322
[5]
Kachris C, Kanonakis K, Tomkos I. Optical interconnection networks in data centers: Recent trends and future challenges. IEEE Commun Mag, 2013, 51, 39 doi: 10.1109/MCOM.2013.6588648
[6]
Agrell E, Karlsson M, Chraplyvy A R, et al. Roadmap of optical communications. J Opt, 2016, 18, 063002 doi: 10.1088/2040-8978/18/6/063002
[7]
[8]
[9]
De La Oliva A, Perez X C, Azcorra A, et al. Xhaul: toward an integrated fronthaul/backhaul architecture in 5G networks. IEEE Wirel Commun, 2015, 22, 32 doi: 10.1109/MWC.2015.7306535
[10]
Tucker R S. High-speed modulation of semiconductor lasers. IEEE Trans Electron Devices, 1985, 32, 2572 doi: 10.1109/T-ED.1985.22387
[11]
Zhu N, Shi Z, Zhang Z, et al. Directly modulated semiconductor lasers. IEEE J Sel Top Quantum Electron, 2018, 24, 1 doi: 10.1109/JSTQE.2017.2720959
[12]
Takahata K, Fujisawa T, Kanazawa S, et al. 1.3-μm, 4 × 25G, EADFB laser array module for compact 10-km 100GbE transceivers. IEEE Photonic Society 24th Annual Meeting, 2011, 208
[13]
Peucheret C. Direct and external modulation of light. Experimental Course in Optical Communication, 2009
[14]
Tadokoro T, Kobayashi W, Fujisawa T, et al. 43 Gb/s 1.3 μm DFB laser for 40 km transmission. J Lightwave Technol, 2012, 30, 2520 doi: 10.1109/JLT.2012.2203095
[15]
Shen C C, Hsu T C, Yeh Y W, et al. Design, modeling, and fabrication of high-speed VCSEL with data rate up to 50 Gb/S. Nanoscale Res Lett, 2019, 14, 1 doi: 10.1186/s11671-018-2843-4
[16]
Yamaoka S, Diamantopoulos N P, Nishi H, et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nat Photonics, 2021, 15, 28 doi: 10.1038/s41566-020-00700-y
[17]
Che D, Matsui Y, Chen X, et al. 400-Gb/s direct modulation using a DFB+R laser. Opt Lett, 2020, 45, 3337 doi: 10.1364/OL.392873
[18]
Pfeiffer T. Next generation mobile fronthaul and midhaul architectures. J Opt Commun Netw, 2015, 7, B38 doi: 10.1364/JOCN.7.000B38
[19]
CPRI. eCPRI interface specification [EB/OL]. http://www.cpri.info/spec.html
[20]
Coldren L A, Corzine S W, Mašanović M L. Diode lasers and photonic integrated circuits. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012
[21]
Ralston J D, Weisser S, Esquivias I, et al. Control of differential gain, nonlinear gain and damping factor for high-speed application of GaAs-based MQW lasers. IEEE J Quantum Electron, 1993, 29, 1648 doi: 10.1109/3.234417
[22]
Ralston J D, Weisser S, Eisele K, et al. Low-bias-current direct modulation up to 33 GHz in InGaAs/GaAs/AlGaAs pseudomorphic MQW ridge-waveguide lasers. IEEE Photonics Technol Lett, 1994, 6, 1076 doi: 10.1109/68.324673
[23]
Weisser S, Larkins E C, Czotscher K, et al. 37 GHz direct modulation bandwidth in short-cavity InGaAs/GaAs MQW lasers with C-doped active regions. IEEE Lasers and Electro-Optics Society 1995 Annual Meeting 8th Annual Meeting Conference Proceedings, 1995, 91
[24]
Weisser S, Larkins E C, Czotscher K, et al. Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers. IEEE Photonics Technol Lett, 1996, 8, 608 doi: 10.1109/68.491554
[25]
Matsui Y, Murai H, Arahira S, et al. 30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser. IEEE Photonics Technol Lett, 1997, 9, 25 doi: 10.1109/68.554159
[26]
Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III–V compound semiconductors and their alloys. J Appl Phys, 2001, 89, 5815 doi: 10.1063/1.1368156
[27]
Otsubo K, Matsuda M, Takada K, et al. 1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation. IEEE J Sel Top Quantum Electron, 2009, 15, 687 doi: 10.1109/JSTQE.2009.2015194
[28]
Fukamachi T, Adachi K, Shinoda K, et al. Wide temperature range operation of 25-Gb/s 1.3-μm InGaAlAs directly modulated lasers. IEEE J Sel Top Quantum Electron, 2011, 17, 1138 doi: 10.1109/JSTQE.2011.2114644
[29]
Simoyama T, Matsuda M, Okumura S, et al. 40-Gbps transmission using direct modulation of 1.3-μm AlGaInAs MQW distributed-reflector lasers up to 70 °C. Optical Fiber Communication Conference, 2011, OWD3
[30]
Kobayashi W, Ito T, Yamanaka T, et al. 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J Sel Top Quantum Electron, 2013, 19, 1500908 doi: 10.1109/JSTQE.2013.2238509
[31]
Matsuda M, Uetake A, Simoyama T, et al. 1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate. IEEE J Sel Top Quantum Electron, 2015, 21, 241 doi: 10.1109/JSTQE.2015.2425145
[32]
Kjebon O, Schatz R, Lourdudoss S, et al. Two-section InGaAsP DBR-lasers at 1.55 μm wavelength with 31 GHz direct modulation bandwidth. 1997 International Conference on Indium Phosphide and Related Materials, 1997, 665
[33]
Reithmaier J P, Kaiser W, Bach L, et al. Modulation speed enhancement by coupling to higher order resonances: A road towards 40 GHz bandwidth lasers on InP. International Conference on Indium Phosphide and Related Materials, 2005, 118
[34]
Radziunas M, Glitzky A, Bandelow U, et al. Improving the modulation bandwidth in semiconductor lasers by passive feedback. IEEE J Sel Top Quantum Electron, 2007, 13, 136 doi: 10.1109/JSTQE.2006.885332
[35]
Troppenz U, Kreissl J, Möhrle M, et al. 40 Gbit/s directly modulated lasers: Physics and application. Proc SPIE, 2011, 7953, 79530F
[36]
Kreissl J, Vercesi V, Troppenz U, et al. Up to 40 Gb/s directly modulated laser operating at low driving current: Buried-heterostructure passive feedback laser (BH-PFL). IEEE Photonics Technol Lett, 2012, 24, 362 doi: 10.1109/LPT.2011.2179530
[37]
Mieda S, Yokota N, Kobayashi W, et al. Ultra-wide-bandwidth optically controlled DFB laser with external cavity. IEEE J Quantum Electron, 2016, 52, 1 doi: 10.1109/JQE.2016.2557489
[38]
Matsui Y, Schatz R, Pham T, et al. 55 GHz bandwidth distributed reflector laser. J Lightwave Technol, 2017, 35, 397 doi: 10.1109/JLT.2017.2650678
[39]
Liu G H, Zhao G Y, Sun J Q, et al. Experimental demonstration of DFB lasers with active distributed reflector. Opt Express, 2018, 26, 29784 doi: 10.1364/OE.26.029784
[40]
Matsui Y, Schatz R, Che D, et al. Isolator-free > 67-GHz bandwidth DFB+R laser with suppressed chirp. 2020 Optical Fiber Communications Conference and Exhibition (OFC), 2020, 1
[41]
Feiste U. Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors. IEEE J Quantum Electron, 1998, 34, 2371 doi: 10.1109/3.736110
[42]
Bardella P, Montrosset I. A new design procedure for DBR lasers exploiting the photon–photon resonance to achieve extended modulation bandwidth. IEEE J Sel Top Quantum Electron, 2013, 19, 1502408 doi: 10.1109/JSTQE.2013.2250260
[43]
Morthier G, Schatz R, Kjebon O. Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization. IEEE J Quantum Electron, 2000, 36, 1468 doi: 10.1109/3.892568
[44]
Vahala K, Yariv A. Detuned loading in coupled cavity semiconductor lasers — effect on quantum noise and dynamics. Appl Phys Lett, 1984, 45, 501 doi: 10.1063/1.95316
[45]
Vahala K, Paslaski J, Yariv A. Observation of modulation speed enhancement, frequency modulation suppression, and phase noise reduction by detuned loading in a coupled-cavity semiconductor laser. Appl Phys Lett, 1985, 46, 1025 doi: 10.1063/1.95799
[46]
Chaciński M, Schatz R. Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers. IEEE J Quantum Electron, 2010, 46, 1360 doi: 10.1109/JQE.2010.2048013
[47]
Zhang L, van Kerrebrouck J, Lin R, et al. Nonlinearity tolerant high-speed DMT transmission with 1.5-μm single-mode VCSEL and multi-core fibers for optical interconnects. J Lightwave Technol, 2019, 37, 380 doi: 10.1109/JLT.2018.2851746
[48]
Zhang L, Chen J J, Agrell E, et al. Enabling technologies for optical data center networks: Spatial division multiplexing. J Lightwave Technol, 2020, 38, 18 doi: 10.1109/JLT.2019.2941765
[49]
van Kerrebrouck J, Pang X D, Ozolins O, et al. High-speed PAM4-based optical sdm interconnects with directly modulated Long-wavelength vcsel. arXiv: 1812.05536, 2018
[50]
Kanazawa S, Yamazaki H, Nakanishi Y, et al. Transmission of 214-Gbit/s 4-PAM signal using an ultra-broadband lumped-electrode EADFB laser module. 2016 Opt Fiber Commun Conf Exhib OFC, 2016, 1
[51]
Kanazawa S, Yamazaki H, Nakanishi Y, et al. 214-gb/s 4-PAM operation of flip-chip interconnection EADFB laser module. J Lightwave Technol, 2017, 35, 418 doi: 10.1109/JLT.2016.2632164
[52]
Yamazaki H, Nagatani M, Hamaoka F, et al., 300-Gbps discrete multi-tone transmission using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image. 42nd European Conference on Optical Communication, 2016, 1
[53]
Yamazaki H, Nagatani M, Hamaoka F, et al. Discrete multitone transmission at net data rate of 250 Gb/s using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image. J Lightwave Technol, 2017, 35, 1300 doi: 10.1109/JLT.2017.2650205
[54]
Mardoyan H, Mestre M A, Estarán J M, et al. 84-, 100-, and 107-GBd PAM-4 intensity-modulation direct-detection transceiver for datacenter interconnects. J Lightwave Technol, 2017, 35, 1253 doi: 10.1109/JLT.2016.2646327
[55]
Ozolins O, Pang X D, Udalcovs A, et al. 100 Gbaud 4PAM link for high speed optical interconnects. 2017 European Conference on Optical Communication (ECOC), 2017, 1
[56]
Hong X Z, Zhang L, Pang X D, et al. 200-Gbps DMT transmission over 1.6-km SSMF with a single EML/DAC/PD for optical interconnects at C-band. 2017 European Conference on Optical Communication (ECOC), 2017, 1
[57]
Lange S, Wolf S, Lutz J, et al. 100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach–Zehnder modulator. J Lightwave Technol, 2018, 36, 97 doi: 10.1109/JLT.2017.2743211
[58]
Mardoyan H, Jorge F, Ozolins O, et al. 204-GBaud on-off keying transmitter for inter-data center communications. Optical Fiber Communication Conference, 2018, Th4A.4
[59]
Zhang L, Wei J L, Stojanovic N, et al. Beyond 200-Gb/s DMT transmission over 2-km SMF based on a low-cost architecture with single-wavelength, single-DAC/ADC and single-PD. 2018 European Conference on Optical Communication (ECOC), 2018, 1
[60]
Stojanovic N, Prodaniuc C, Zhang L, et al. 210/225 Gbit/s PAM-6 transmission with BER below KP4-FEC/EFEC and at least 14 dB link budget. 2018 European Conference on Optical Communication (ECOC), 2018, 1
[61]
Zhang L, Hong X Z, Pang X D, et al. Nonlinearity-aware 200 Gbit/s DMT transmission for C-band short-reach optical interconnects with a single packaged electro-absorption modulated laser. Opt Lett, 2018, 43, 182 doi: 10.1364/OL.43.000182
[62]
Zhang L, Chen J J, Udalcovs A, et al. Lattice pilot aided DMT transmission for optical interconnects achieving 5.820-bits/Hz per lane. 45th European Conference on Optical Communication (ECOC 2019), 2019, 1
[63]
Estaran J M, Mardoyan H, Jorge F, et al. 140/180/204-Gbaud OOK transceiver for inter-and intra-data center connectivity. J Lightwave Technol, 2019, 37, 178 doi: 10.1109/JLT.2018.2876732
[64]
Buchali F, Schuh K, Le S T, et al. A SiGe HBT BiCMOS 1-to-4 ADC frontend supporting 100 GBaud PAM4 reception at 14 GHz digitizer bandwidth. Optical Fiber Communication Conference, 2019, 1
[65]
Ummethala S, Ummethala S, Kemal J N, et al. Capacitively coupled silicon-organic hybrid modulator for 200 Gbit/s PAM-4 signaling. 2019, JTh5B.2
[66]
Zhang F, Zhu Y, Yang F, et al. Up to single lane 200G optical interconnects with silicon photonic modulator. 2019 Optical Fiber Communications Conference and Exhibition (OFC) 2019, 1
[67]
Prodaniuc C, Stojanovic N, Xie C S, et al. 3-Dimensional PAM-8 modulation for 200 Gbps/lambda optical systems. Opt Commun, 2019, 435, 1 doi: 10.1016/j.optcom.2018.10.046
[68]
Zhang J, Yu J J, Zhao L, et al. Demonstration of 260-Gb/s single-lane EML-based PS-PAM-8 IM/DD for datacenter interconnects. Optical Fiber Communication Conference (OFC), 2019, 1
[69]
Masuda A, Yamamoto S, Taniguchi H, et al. 255-Gbps PAM-8 transmission under 20-GHz bandwidth limitation using NL-MLSE based on volterra filter. Optical Fiber Communication Conference (OFC), 2019, W4I.6
[70]
Li F, Li Z B, Sui Q, et al. 200 Gbit/s (68.25 Gbaud) PAM8 signal transmission and reception for intra-data center interconnect. Optical Fiber Communication Conference (OFC), 2019, 1
[71]
Diamantopoulos N P, Yamazaki H, Yamaoka S, et al. Net 321.24-Gb/s IMDD transmission Based on a >100-GHz bandwidth directly-modulated laser. Optical Fiber Communication Conference, 2020, Th4C.1
[72]
Chaciński M, Westergren U, Stoltz B, et al. Monolithically integrated 100 GHz DFB-TWEAM. J Lightwave Technol, 2009, 27, 3410 doi: 10.1109/JLT.2009.2015773
[73]
Yamaoka S, Diamantopoulos N P, Nishi H, et al. 239.3-Gbit/s net rate PAM-4 transmission using directly modulated membrane lasers on high-thermal-conductivity SiC. 45th European Conference on Optical Communication (ECOC 2019), 2019, 1
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3849 Times PDF downloads: 207 Times Cited by: 0 Times

    History

    Received: 15 November 2020 Revised: 16 December 2020 Online: Accepted Manuscript: 27 January 2021Uncorrected proof: 03 February 2021Published: 12 April 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jianou Huang, Chao Li, Rongguo Lu, Lianyan Li, Zizheng Cao. Beyond the 100 Gbaud directly modulated laser for short reach applications[J]. Journal of Semiconductors, 2021, 42(4): 041306. doi: 10.1088/1674-4926/42/4/041306 ****J O Huang, C Li, R G Lu, L Y Li, Z Z Cao, Beyond the 100 Gbaud directly modulated laser for short reach applications[J]. J. Semicond., 2021, 42(4): 041306. doi: 10.1088/1674-4926/42/4/041306.
      Citation:
      Jianou Huang, Chao Li, Rongguo Lu, Lianyan Li, Zizheng Cao. Beyond the 100 Gbaud directly modulated laser for short reach applications[J]. Journal of Semiconductors, 2021, 42(4): 041306. doi: 10.1088/1674-4926/42/4/041306 ****
      J O Huang, C Li, R G Lu, L Y Li, Z Z Cao, Beyond the 100 Gbaud directly modulated laser for short reach applications[J]. J. Semicond., 2021, 42(4): 041306. doi: 10.1088/1674-4926/42/4/041306.

      Beyond the 100 Gbaud directly modulated laser for short reach applications

      doi: 10.1088/1674-4926/42/4/041306
      More Information
      • Jianou Huang:received his BSc (2014) in communication engineering from Beijing University of Posts and Telecommunications (BUPT), Beijing, China, and his Master (2017) of information and communication engineering from BUPT. From 2017 to now, he is a doctoral candidate in the field of beam-steered optoelectronic system and semiconductor laser in the Electro-Optical Communications (ECO) Group of Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands
      • Chao Li:received the Ph.D. degree from Huazhong University of Science and Technology in 2015, Wuhan, China, focusing on ultra-high capacity fiber-optic communications. From 2015 to 2020, he was a postdoctoral at University of Science and Technology of China and Eindhoven University of Technology. He is currently an associate professor at Anhui University. His research interests include fiber and wireless optical communications
      • Rongguo Lu:received the M.Sc. and Ph.D. degrees in optical engineering in 2006 and 2009, respectively, both from University of Electronic Science and Technology of China, where he is currently an Associate Professor. During February 2013 to February 2014, he as a Visiting Scholar, joined the COBRA Research Institute, Eindhoven University of Technology (TU/e). His current research interests include integrated optics, optical communication, and microwave photonics
      • Lianyan Li:received the Ph.D. degree from Nanjing University in 2015, Nanjing, China, focusing on tunable semiconductor laser arrays and the integration with silicon phonics. She is currently a lecturer at Nanjing University of Post and Telecommunications. Her research interests include high performance optical transmitters, optical switching devices and integrated microwave photonics
      • Zizheng Cao:received his Ph.D. degree with highest honors from Eindhoven University of Technology (TU/e) where he is currently a tenured Assistant Professor. He mainly works at two areas: 1) new mechanisms, devices, algorithms and architectures to enable lightwave/millimeter wave various kinds of beam steering systems, including scenarios of line-of-sight (LoS), non-line-of-sight (NLoS) and complex wavefront; 2) applications of beam steering systems to indoor communication (e.g. optical wireless communication, OWC), metrology (e.g. LiDAR) and healthcare (e.g. blood sensing)
      • Corresponding author: z.cao@tue.nl
      • Received Date: 2020-11-15
      • Revised Date: 2020-12-16
      • Published Date: 2021-04-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return