Citation: |
Songtao Liu, Akhilesh Khope. Latest advances in high-performance light sources and optical amplifiers on silicon[J]. Journal of Semiconductors, 2021, 42(4): 041307. doi: 10.1088/1674-4926/42/4/041307
****
S T Liu, A Khope, Latest advances in high-performance light sources and optical amplifiers on silicon[J]. J. Semicond., 2021, 42(4): 041307. doi: 10.1088/1674-4926/42/4/041307.
|
Latest advances in high-performance light sources and optical amplifiers on silicon
doi: 10.1088/1674-4926/42/4/041307
More Information-
Abstract
Efficient light generation and amplification has long been missing on the silicon platform due to its well-known indirect bandgap nature. Driven by the size, weight, power and cost (SWaP-C) requirements, the desire to fully realize integrated silicon electronic and photonic integrated circuits has greatly pushed the effort of realizing high performance on-chip lasers and amplifiers moving forward. Several approaches have been proposed and demonstrated to address this issue. In this paper, a brief overview of recent progress of the high-performance lasers and amplifiers on Si based on different technology is presented. Representative device demonstrations, including ultra-narrow linewidth III–V/Si lasers, fully integrated III–V/Si/Si3N4 lasers, high-channel count mode locked quantum dot (QD) lasers, and high gain QD amplifiers will be covered. -
References
[1] Rahim A, Spuesens T, Baets R, et al. Open-access silicon photonics: Current status and emerging initiatives. Proc IEEE, 2018, 106, 2313 doi: 10.1109/JPROC.2018.2878686[2] Pinguet T, Denton S, Gloeckner S, et al. High-volume manufacturing platform for silicon photonics. Proc IEEE, 2018, 106, 2281 doi: 10.1109/JPROC.2018.2859198[3] Chen X, Milosevic M M, Stanković S, et al. The emergence of silicon photonics as a flexible technology platform. Proc IEEE, 2018, 106, 2101 doi: 10.1109/JPROC.2018.2854372[4] Glick M, Abrams N C, Cheng Q X, et al. PINE: photonic integrated networked energy efficient datacenters (ENLITENED program). J Opt Commun Netw, 2020, 12, 443 doi: 10.1364/JOCN.402788[5] Poulton C V, Byrd M J, Moss B, et al. Element optical phased array with 100° steering range and flip-chip CMOS. Conference on Lasers and Electro-Optics, 2020, JTh4A.3[6] Komljenovic T, Huang D N, Pintus P, et al. Photonic integrated circuits using heterogeneous integration on silicon. Proc IEEE, 2018, 106, 2246 doi: 10.1109/JPROC.2018.2864668[7] Adoption of silicon photonics is reaching an inflection point. https://www.lightcounting.com/light-trends/adoption-silicon-photonics-reaching-inflection-point/#:~:text=Many in the industry have, such transitions is most challenging[8] Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photonics, 2010, 4, 511 doi: 10.1038/nphoton.2010.167[9] Fang A W, Park H, Cohen O, et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt Express, 2006, 14, 9203 doi: 10.1364/OE.14.009203[10] Jones R, Doussiere P, Driscoll J B, et al. Heterogeneously integrated InP\/silicon photonics: Fabricating fully functional transceivers. IEEE Nanotechnol Mag, 2019, 13, 17 doi: 10.1109/MNANO.2019.2891369[11] Liu A Y, Bowers J. Photonic integration with epitaxial III–V on silicon. IEEE J Sel Top Quantum Electron, 2018, 24, 6000412 doi: 10.1109/JSTQE.2018.2854542[12] Norman J C, Jung D, Wan Y T, et al. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics, 2018, 3, 030901 doi: 10.1063/1.5021345[13] Rong H S, Xu S B, Kuo Y H, et al. Low-threshold continuous-wave Raman silicon laser. Nat Photonics, 2007, 1, 232 doi: 10.1038/nphoton.2007.29[14] Liu J F, Sun X C, Camacho-Aguilera R, et al. Ge-on-Si laser operating at room temperature. Opt Lett, 2010, 35, 679 doi: 10.1364/OL.35.000679[15] Wang Z C, Abbasi A, Dave U, et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 2017, 11, 1700063 doi: 10.1002/lpor.201700063[16] Fang A W, Koch B R, Gan K G, et al. A racetrack mode-locked silicon evanescent laser. Opt Express, 2008, 16, 1393 doi: 10.1364/OE.16.001393[17] Wang Z C, van Gasse K, Moskalenko V, et al. A III-V-on-Si ultra-dense comb laser. Light: Sci Appl, 2017, 6, e16260 doi: 10.1038/lsa.2016.260[18] Zhang C, Srinivasan S, Tang Y, et al. Low threshold and high speed short cavity distributed feedback hybrid silicon lasers. Opt Express, 2014, 22, 10202 doi: 10.1364/OE.22.010202[19] Liang D, Huang X, Kurczveil G, et al. Integrated finely tunable microring laser on silicon. Nat Photonics, 2016, 10, 719 doi: 10.1038/nphoton.2016.163[20] Komljenovic T, Srinivasan S, Norberg E, et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J Sel Top Quantum Electron, 2015, 21, 214 doi: 10.1109/JSTQE.2015.2422752[21] Kurczveil G, Heck M J R, Peters J D, et al. An integrated hybrid silicon multiwavelength AWG laser. IEEE J Sel Top Quantum Electron, 2011, 17, 1521 doi: 10.1109/JSTQE.2011.2112639[22] Zhang C, Zhang S J, Peters J D, et al. 8 × 8 × 40 Gbps fully integrated silicon photonic network on chip. Optica, 2016, 3, 785 doi: 10.1364/OPTICA.3.000785[23] Roelkens G, Liu L, Liang D, et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev, 2010, 4, 751 doi: 10.1002/lpor.200900033[24] Tran M A, Huang D N, Bowers J E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photonics, 2019, 4, 111101 doi: 10.1063/1.5124254[25] Henry C. Theory of the linewidth of semiconductor lasers. IEEE J Quantum Electron, 1982, 18, 259 doi: 10.1109/JQE.1982.1071522[26] Davenport M L, Liu S T, Bowers J E. Integrated heterogeneous silicon/III–V mode-locked lasers. Photon Res, 2018, 6, 468 doi: 10.1364/PRJ.6.000468[27] Santis C T, Steger S T, Vilenchik Y, et al. High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms. Proc Natl Acad Sci USA, 2014, 111, 2879 doi: 10.1073/pnas.1400184111[28] Tran M, Huang D N, Komljenovic T, et al. Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics. Appl Sci, 2018, 8, 1139 doi: 10.3390/app8071139[29] Bauters J F, Heck M J R, John D, et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt Express, 2011, 19, 3163 doi: 10.1364/OE.19.003163[30] Santis C T, Vilenchik Y, Yariv A, et al. Sub-kHz quantum linewidth semiconductor laser on silicon chip. Conf Lasers Electro-Opt CLEO, 2015, 1[31] Huang D N, Tran M A, Guo J, et al. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica, 2019, 6, 745 doi: 10.1364/OPTICA.6.000745[32] Liu B, Shakouri A, Bowers J E. Passive microring-resonator-coupled lasers. Appl Phys Lett, 2001, 79, 3561 doi: 10.1063/1.1420585[33] Malik A, Guo J, Tran M A, et al. Widely tunable, heterogeneously integrated quantum-dot O-band lasers on silicon. Photon Res, 2020, 8, 1551 doi: 10.1364/PRJ.394726[34] Xiang C, Jin W, Guo J, et al. Effects of nonlinear loss in high-Q Si ring resonators for narrow-linewidth III-V/Si heterogeneously integrated tunable lasers. Opt Express, 2020, 28, 19926 doi: 10.1364/OE.394491[35] Jin W, Yang Q F, Chang L, et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. arXiv preprint arXiv: 2009.07390, 2020[36] Xiang C, Jin W, Guo J, et al. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica, 2020, 7, 20 doi: 10.1364/OPTICA.384026[37] de Beeck C O, Haq B, Elsinger L, et al. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica, 2020, 7, 386 doi: 10.1364/OPTICA.382989[38] Park H, Zhang C, Tran M A, et al. Heterogeneous silicon nitride photonics. Optica, 2020, 7, 336 doi: 10.1364/OPTICA.391809[39] Cheng Q X, Bahadori M, Glick M, et al. Recent advances in optical technologies for data centers: A review. Optica, 2018, 5, 1354 doi: 10.1364/OPTICA.5.001354[40] Coldren L A, Corzine S W, Mashanovitch M L. Diode lasers and photonic integrated circuits. In: Wiley Series in Microwave and Optical Engineering. Wiley, 2012[41] Berg T W, Mork J. Saturation and noise properties of quantum-dot optical amplifiers. IEEE J Quantum Electron, 2004, 40, 1527 doi: 10.1109/JQE.2004.835114[42] Park H, Fang A W, Cohen O, et al. A hybrid AlGaInAs–silicon evanescent amplifier. IEEE Photonics Technol Lett, 2007, 19, 230 doi: 10.1109/LPT.2007.891188[43] Davenport M L, Skendžić S, Volet N, et al. Heterogeneous silicon/III –V semiconductor optical amplifiers. IEEE J Sel Top Quantum Electron, 2016, 22, 78 doi: 10.1109/JSTQE.2016.2593103[44] Cheung S, Kawakita Y, Shang K, et al. Highly efficient chip-scale III –V/silicon hybrid optical amplifiers. Opt Express, 2015, 23, 22431 doi: 10.1364/OE.23.022431[45] van Gasse K, Wang R J, Roelkens G. 27 dB gain III–V-on-silicon semiconductor optical amplifier with > 17 dBm output power. Opt Express, 2019, 27, 293 doi: 10.1364/OE.27.000293[46] Chen S M, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 2016, 10, 307 doi: 10.1038/nphoton.2016.21[47] Norman J C, Jung D, Zhang Z Y, et al. A review of high-performance quantum dot lasers on silicon. IEEE J Quantum Electron, 2019, 55, 2000511 doi: 10.1109/JQE.2019.2901508[48] Pan S J, Cao V, Liao M Y, et al. Recent progress in epitaxial growth of III –V quantum-dot lasers on silicon substrate. J Semicond, 2019, 40, 101302 doi: 10.1088/1674-4926/40/10/101302[49] Shi B, Han Y, Li Q, et al. 1.55-μm lasers epitaxially grown on silicon. IEEE J Sel Top Quantum Electron, 2019, 25, 1900711 doi: 10.1109/JSTQE.2019.2927579[50] Wei W Q, Feng Q, Wang Z H, et al. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J Semicond, 2019, 40, 53 doi: 10.1088/1674-4926/40/10/101303[51] Jung D, Zhang Z Y, Norman J, et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics, 2018, 5, 1094 doi: 10.1021/acsphotonics.7b01387[52] Liu A Y, Srinivasan S, Norman J, et al. Quantum dot lasers for silicon photonics. Photonics Res, 2015, 3, B1 doi: 10.1364/PRJ.3.0000B1[53] Wang T, Liu H, Lee A, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19, 11381 doi: 10.1364/OE.19.011381[54] Liu A Y, Peters J, Huang X, et al. Electrically pumped continuous-wave 13 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 2017, 42, 338 doi: 10.1364/OL.42.000338[55] Chen S M, Liao M Y, Tang M C, et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express, 2017, 25, 4632 doi: 10.1364/OE.25.004632[56] Wan Y T, Norman J, Li Q, et al. 13 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 2017, 4, 940 doi: 10.1364/OPTICA.4.000940[57] Wei W Q, Zhang J Y, Wang J H, et al. Phosphorus-free 1.5 μm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform. Opt Lett., 2020, 45, 2042 doi: 10.1364/OL.389191[58] Wan Y T, Zhang S, Norman J C, et al. Tunable quantum dot lasers grown directly on silicon. Optica, 2019, 6, 1394 doi: 10.1364/OPTICA.6.001394[59] Liu S T, Norman J, Dumont M, et al. High-performance O-band quantum-dot semiconductor optical amplifiers directly grown on a CMOS compatible silicon substrate. ACS Photonics, 2019, 6, 2523 doi: 10.1021/acsphotonics.9b00903[60] Liu S T, Wu X R, Jung D, et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica, 2019, 6, 128 doi: 10.1364/OPTICA.6.000128[61] Zhang Z Y, Zhang Z Y, Norman J C, et al. Integrated dispersion compensated mode-locked quantum dot laser. Photon Res, 2020, 8, 1428 doi: 10.1364/PRJ.397175[62] Wang Y, Chen S M, Yu Y, et al. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 2018, 5, 528 doi: 10.1364/OPTICA.5.000528[63] Wan Y T, Norman J C, Tong Y Y, et al. Quantum dot lasers: 1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si (laser photonics rev. 14(7)/2020). Laser Photonics Rev, 2020, 14, 2070042 doi: 10.1002/lpor.202070042[64] Chen B L, Wan Y T, Xie Z Y, et al. Low dark current high gain InAs quantum dot avalanche photodiodes monolithically grown on Si. ACS Photonics, 2020, 7, 528 doi: 10.1021/acsphotonics.9b01709[65] Wei W Q, Feng Q, Guo J J, et al. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration. Opt Express, 2020, 28, 26555 doi: 10.1364/OE.402174[66] Zhang Z Y, Jung D, Norman J C, et al. Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications. IEEE J Sel Top Quantum Electron, 2019, 25, 1900509 doi: 10.1109/JSTQE.2019.2916884[67] Chow W W, Zhang Z Y, Norman J C, et al. On quantum-dot lasing at gain peak with linewidth enhancement factor αH = 0. APL Photonics, 2020, 5, 026101 doi: 10.1063/1.5133075[68] Huang H M, Duan J N, Jung D, et al. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J Opt Soc Am B, 2018, 35, 2780 doi: 10.1364/JOSAB.35.002780[69] Thompson M G, Rae A R, Xia M, et al. InGaAs quantum-dot mode-locked laser diodes. IEEE J Sel Top Quantum Electron, 2009, 15, 661 doi: 10.1109/JSTQE.2008.2012265[70] Liu S T, Wang H T, Sun M D, et al. AWG-based monolithic 4 × 12 GHz multichannel harmonically mode-locked laser. IEEE Photonics Technol Lett, 2016, 28, 241 doi: 10.1109/LPT.2015.2493344[71] Kemal J N, Marin-Palomo P, Panapakkam V, et al. WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator. 2017 Opt Fiber Commun Conf Exhib OFC, 2017, 1[72] Khope A S P, Saeidi M, Yu R, et al. Multi-wavelength selective crossbar switch. Opt Express, 2019, 27, 5203 doi: 10.1364/OE.27.005203[73] Khope A S P, Liu S T, Zhang Z Y, et al. 2 λ switch. Opt Lett, 2020, 45, 5340 doi: 10.1364/OL.402241[74] Liu S T, Norman J C, Jung D, et al. Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si. Appl Phys Lett, 2018, 113, 041108 doi: 10.1063/1.5043200[75] Liu S, Jung D, Norman J C, et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron Lett, 2018, 54, 432 doi: 10.1049/el.2017.4639[76] Liu S T, Wu X R, Norman J, et al. 100 GHz colliding pulse mode locked quantum dot lasers directly grown on Si for WDM application. Conference on Lasers and Electro-Optics, 2019, ATu3P-5[77] Auth D, Liu S, Norman J, et al. Passively mode-locked semiconductor quantum dot on silicon laser with 400 Hz RF line width. Opt Express, 2019, 27, 27256 doi: 10.1364/OE.27.027256[78] Wu X R, Liu S T, Jung D, et al. Terabit interconnects with a 20-GHz O-band passively mode locked quantum dot laser grown directly on silicon. Optical Fiber Communication Conference (OFC), 2019, W2A-3[79] Lu Z G, Liu J R, Raymond S, et al. 312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser. Opt Express, 2008, 16, 10835 doi: 10.1364/OE.16.010835[80] Gao F, Luo S, Ji H M, et al. Single-section mode-locked 1.55-μm InAs/InP quantum dot lasers grown by MOVPE. Opt Commun, 2016, 370, 18 doi: 10.1016/j.optcom.2016.02.061[81] Rosales R, Murdoch S G, Watts R T, et al. High performance mode locking characteristics of single section quantum dash lasers. Opt Express, 2012, 20, 8649 doi: 10.1364/OE.20.008649[82] Chow W W, Liu S T, Zhang Z Y, et al. Multimode description of self-mode locking in a single-section quantum-dot laser. Opt Express, 2020, 28, 5317 doi: 10.1364/OE.382821[83] Bardella P, Columbo L L, Gioannini M. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: A theoretical study. Opt Express, OE, 2017, 25, 26234 doi: 10.1364/OE.25.026234[84] Akiyama T, Sugawara M, Arakawa Y. Quantum-dot semiconductor optical amplifiers. Proc IEEE, 2007, 95, 1757 doi: 10.1109/JPROC.2007.900899[85] Liu S T, Tong Y Y, Norman J, et al. High efficiency, high gain and high saturation output power quantum dot SOAs grown on Si and applications. Optical Fiber Communication Conference (OFC), 2020, 1[86] Bowers J E, Gossard A, Jung D, et al. Quantum dot photonic integrated circuits on silicon. Conference on Lasers and Electro-Optics, 2018, 1[87] Han Y, Yan Z, Ng W K, et al. Bufferless 1.5 μm III-V lasers grown on Si-photonics 220 nm silicon-on-insulator platforms. Optica, 2020, 7, 148 doi: 10.1364/OPTICA.381745 -
Proportional views