Citation: |
Yanbo Shang, Zhimin Fang, Wanpei Hu, Chuantian Zuo, Bairu Li, Xingcheng Li, Mingtai Wang, Liming Ding, Shangfeng Yang. Efficient and photostable CsPbI2Br solar cells realized by adding PMMA[J]. Journal of Semiconductors, 2021, 42(5): 050501. doi: 10.1088/1674-4926/42/5/050501
****
Y B Shang, Z M Fang, W P Hu, C T Zuo, B R Li, X C Li, M T Wang, L M Ding, S F Yang, Efficient and photostable CsPbI2Br solar cells realized by adding PMMA[J]. J. Semicond., 2021, 42(5): 050501. doi: 10.1088/1674-4926/42/5/050501.
|
Efficient and photostable CsPbI2Br solar cells realized by adding PMMA
DOI: 10.1088/1674-4926/42/5/050501
More Information
-
References
[1] Jia X, Zuo C, Tao S, et al. CsPb(IxBr1–x)3 solar cells. Sci Bull, 2019, 64, 1532 doi: 10.1016/j.scib.2019.08.017[2] Hwang T, Lee B, Kim J, et al. From nanostructural evolution to dynamic interplay of constituents: perspectives for perovskite solar cells. Adv Mater, 2018, 30, e1704208 doi: 10.1002/adma.201704208[3] Li M, Liu S, Qiu F, et al. High-efficiency CsPbI2Br perovskite solar cells with dopant-free poly(3-hexylthiophene) hole transporting layers. Adv Energy Mater, 2020, 10, 2000501 doi: 10.1002/aenm.202000501[4] Shen E, Chen J, Tian Y, et al. Interfacial energy level tuning for efficient and thermostable CsPbI2Br perovskite solar cells. Adv Sci, 2020, 7, 1901952 doi: 10.1002/advs.201901952[5] Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule, 2019, 3, 191 doi: 10.1016/j.joule.2018.10.011[6] Duan C, Cui J, Zhang M, et al. Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Adv Energy Mater, 2020, 10, 2000691 doi: 10.1002/aenm.202000691[7] Han Y, Zhao H, Duan C, et al. Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv Funct Mater, 2020, 30, 1909972 doi: 10.1002/adfm.201909972[8] Xiang W, Wang W, Kubicki D, et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule, 2019, 3, 205 doi: 10.1016/j.joule.2018.10.008[9] Wang W, Wang R, Wang Z, et al. Tailored phase transformation of CsPbI2Br films by Copper(ii) bromide for high-performance all-inorganic perovskite solar cells. Nano Lett, 2019, 19, 5176 doi: 10.1021/acs.nanolett.9b01553[10] Liu C, Li W, Li H, et al. Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells. Adv Energy Mater, 2019, 9, 1803572 doi: 10.1002/aenm.201803572[11] Zhang T, Li H, Liu S, et al. Low-temperature stable α-phase inorganic perovskite compounds via crystal cross-linking. J Phys Chem Lett, 2019, 10, 200 doi: 10.1021/acs.jpclett.8b03481[12] Zhao H, Yang S, Han Y, et al. A high mobility conjugated polymer enables air and thermally stable CsPbI2Br perovskite solar cells with an efficiency exceeding 15%. Adv Mater Technol, 2019, 4, 1900311 doi: 10.1002/admt.201900311[13] Fu S, Zhang W, Li X, et al. Dual-protection strategy for high-efficiency and stable CsPbI2Br inorganic perovskite solar cells. ACS Energy Lett, 2020, 5, 676 doi: 10.1021/acsenergylett.9b02716[14] Liu C, He J, Wu M, et al. All-inorganic CsPbI2Br perovskite solar cell with open-circuit voltage over 1.3 V by balancing electron and hole transport. Sol RRL, 2020, 4, 2000016 doi: 10.1002/solr.202000016[15] Mali S, Patil J, Shinde P, et al. Fully air-processed dynamic hot-air assisted M:CsPbI2Br (M: Eu2+, In3+) for stable inorganic perovskite solar cells. Matter, 2021, 4, 1 doi: 10.1016/j.matt.2020.11.008[16] Beal R, Slotcavage D, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 2016, 7, 746 doi: 10.1021/acs.jpclett.6b00002[17] Yan L, Xue Q, Liu M, et al. Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%. Adv Mater, 2018, 30, e1802509 doi: 10.1002/adma.201802509[18] Tian J, Xue Q, Tang X, et al. Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability. Adv Mater, 2019, 31, e1901152 doi: 10.1002/adma.201901152[19] Xiao Q, Tian J, Xue Q, et al. Squaraine-based polymeric hole-transporting materials with comprehensive passivation effects for efficient all-inorganic perovskite solar cells. Angew Chem Int Ed, 2019, 58, 17724 doi: 10.1002/anie.201907331[20] Zai H, Zhang D, Li L, et al. Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport. J Mater Chem A, 2018, 6, 23602 doi: 10.1039/C8TA09859J[21] Bi D, Yi C, Luo J, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat Energy, 2016, 1, 16142 doi: 10.1038/nenergy.2016.142[22] Li B, Zhen J, Wan Y, et al. Anchoring fullerene onto perovskite film via grafting pyridine toward enhanced electron transport in high-efficiency solar cells. ACS Appl Mater Interfaces, 2018, 10, 32471 doi: 10.1021/acsami.8b11459[23] Wang J, Zhang J, Zhou Y, et al. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat Commun, 2020, 11, 177 doi: 10.1038/s41467-019-13909-5[24] Rao H, Ye S, Gu F, et al. Morphology controlling of all-inorganic perovskite at low temperature for efficient rigid and flexible solar cells. Adv Energy Mater, 2018, 8, 1800758 doi: 10.1002/aenm.201800758[25] Slotcavage D, Karunadasa H, McGehee M, et al. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett, 2016, 1, 1199 doi: 10.1021/acsenergylett.6b00495 -
Supplements
21020026suppl.pdf
-
Proportional views