Citation: |
Zhiqiang Ma, Zhong Wu, Yue Xu. Compact SPAD pixels with fast and accurate photon counting in the analog domain[J]. Journal of Semiconductors, 2021, 42(5): 052402. doi: 10.1088/1674-4926/42/5/052402
****
Z Q Ma, Z Wu, Y Xu, Compact SPAD pixels with fast and accurate photon counting in the analog domain[J]. J. Semicond., 2021, 42(5): 052402. doi: 10.1088/1674-4926/42/5/052402.
|
Compact SPAD pixels with fast and accurate photon counting in the analog domain
DOI: 10.1088/1674-4926/42/5/052402
More Information
-
Abstract
A compact pixel for single-photon detection in the analog domain is presented. The pixel integrates a single-photon avalanche diode (SPAD), a passive quenching & active recharging circuit (PQARC), and an analog counter for fast and accurate sensing and counting of photons. Fabricated in a standard 0.18 µm CMOS technology, the simulated and experimental results reveal that the dead time of the PQARC is about 8 ns and the maximum photon-counting rate can reach 125 Mcps (counting per second). The analog counter can achieve an 8-bit counting range with a voltage step of 6.9 mV. The differential nonlinearity (DNL) and integral nonlinearity (INL) of the analog counter are within the ± 0.6 and ± 1.2 LSB, respectively, indicating high linearity of photon counting. Due to its simple circuit structure and compact layout configuration, the total area occupation of the presented pixel is about 1500 μm2, leading to a high fill factor of 9.2%. The presented in-pixel front-end circuit is very suitable for the high-density array integration of SPAD sensors. -
References
[1] Jiang X D, Itzler M, O’Donnell K, et al. InP-based single-photon detectors and geiger-mode APD arrays for quantum communications applications. IEEE J Sel Top Quantum Electron, 2015, 21, 5 doi: 10.1109/JSTQE.2014.2358685[2] Xu H S, Perenzoni D, Tomasi A, et al. A 16 × 16 pixel post-processing free quantum random number generator based on SPADs. IEEE Trans Circuits Syst II, 2018, 65, 627 doi: 10.1109/TCSII.2018.2821904[3] Nissinen I, Nissinen J, Keränen P, et al. A 16 × 256 SPAD line detector with a 50-ps, 3-bit, 256-channel time-to-digital converter for Raman spectroscopy. IEEE Sens J, 2018, 18, 3789 doi: 10.1109/JSEN.2018.2813531[4] Bronzi D, Villa F, Tisa S, et al. 100 000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging. IEEE J Sel Top Quantum Electron, 2014, 20, 354 doi: 10.1109/JSTQE.2014.2341562[5] Zhang C, Lindner S, Antolović I M, et al. A 30-frames/s, 252 ×144 SPAD flash LiDAR with 1728 dual-clock 48.8-ps TDCs, and pixel-wise integrated histogramming. IEEE J Solid-State Circuits, 2019, 54, 1137 doi: 10.1109/JSSC.2018.2883720[6] Bronzi D, Zou Y, Villa F, et al. Automotive three-dimensional vision through a single-photon counting SPAD camera. IEEE Trans Intell Transp Syst, 2016, 17, 782 doi: 10.1109/TITS.2015.2482601[7] Li D U, Arlt J, Richardson J, et al. Real-time fluorescence lifetime imaging system with a 32 × 32 013μm CMOS low dark-count single-photon avalanche diode array. Opt Express, 2010, 18, 10257 doi: 10.1364/OE.18.010257[8] Ulku A C, Bruschini C, Antolović I M, et al. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE J Sel Top Quantum Electron, 2019, 25, 1 doi: 10.1109/JSTQE.2018.2867439[9] Zappa F, Lotito A, Giudice A C, et al. Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors. IEEE J Solid-State Circuits, 2003, 38, 1298 doi: 10.1109/JSSC.2003.813291[10] Bronzi D, Tisa S, Villa F, et al. Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects. IEEE Photonics Technol Lett, 2013, 25, 776 doi: 10.1109/LPT.2013.2251621[11] ZhengL X, Wu J, Shi L X, et al. Active quenching circuit for a InGaAs single-photon avalanche diode. J Semicond, 2014, 35, 045011 doi: 10.1088/1674-4926/35/4/045011[12] Giustolisi G, Grasso A D, Palumbo G. Integrated quenching-and-reset circuit for single-photon avalanche diodes. IEEE Trans Instrum Meas, 2015, 64, 271 doi: 10.1109/TIM.2014.2338652[13] Ceccarelli F, Acconcia G, Gulinatti A, et al. Fully integrated active quenching circuit driving custom-technology SPADs with 6.2-ns dead time. IEEE Photonics Technol Lett, 2019, 31, 102 doi: 10.1109/LPT.2018.2884740[14] Veerappan C, Richardson J, Walker R, et al. A 160 × 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter. 2011 IEEE International Solid-State Circuits Conference, 2011, 312[15] Villa F, Lussana R, Bronzi D, et al. CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight. IEEE J Sel Top Quantum Electron, 2014, 20, 364 doi: 10.1109/JSTQE.2014.2342197[16] Stoppa D, Borghetti F, Richardson J, et al. A 32 × 32-pixel array with in-pixel photon counting and arrival time measurement in the analog domain. 2009 Proceedings of ESSCIRC, 2009, 204[17] Chitnis D, Collins S. Compact readout circuits for SPAD arrays. Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010, 357[18] Pancheri L, Massari N, Stoppa D. SPAD image sensor with analog counting pixel for time-resolved fluorescence detection. IEEE Trans Electron Devices, 2013, 60, 3442 doi: 10.1109/TED.2013.2276752[19] Panina E, Pancheri L, Dalla Betta G F, et al. Compact CMOS analog counter for SPAD pixel arrays. IEEE Trans Circuits Syst II, 2014, 61, 214 doi: 10.1109/TCSII.2014.2312094[20] Perenzoni M, Massari N, Perenzoni D, et al. A 160 × 120-pixel analog-counting single-photon imager with Sub-ns time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging. IEEE J. Solid-State Circuits, 2016, 51, 155 doi: 10.1109/JSSC.2015.2482497[21] Diéguez A, Canals J, Franch N, et al. A compact analog histogramming SPAD-based CMOS chip for time-resolved fluorescence. IEEE Trans Biomed Circuits Syst, 2019, 13, 343 doi: 10.1109/TBCAS.2019.2892825[22] Xu Y, Zhao T C, Li D. An accurate behavioral model for single-photon avalanche diode statistical performance simulation. Superlattices Microstruct, 2018, 113, 635 doi: 10.1016/j.spmi.2017.11.049 -
Proportional views