NEWS AND VIEWS

Magnetic quantum oscillation in a monolayer insulator

Xin Lu

+ Author Affiliations

 Corresponding author: Xin Lu, xlu5@tulane.edu

PDF

Turn off MathJax



[1]
Wang P, Yu G, Jia Y, et al. Landau quantization and highly mobile fermions in an insulator. Nature, 2021, 589, 225 doi: 10.1038/s41586-020-03084-9
[2]
Qian X, Liu J, Fu L, et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science, 2014, 346, 1344 doi: 10.1126/science.1256815
[3]
Tang S J, Zhang C F, Wong D, et al. Quantum spin Hall state in monolayer 1T'-WTe2. Nat Phys, 2017, 13, 683 doi: 10.1038/nphys4174
[4]
Fei Z Y, Palomaki T, Wu S F, et al. Edge conduction in monolayer WTe2. Nat Phys, 2017, 13, 677 doi: 10.1038/nphys4091
[5]
Wu S F, Fatemi V, Gibson Q D, et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science, 2018, 359, 76 doi: 10.1126/science.aan6003
[6]
Kwan Y H, Devakul T, Sondhi S L, et al. Theory of competing excitonic orders in insulating WTe2 monolayers. arXiv preprint arXiv: 2012.05255, 2020
[7]
Jia Y, Wang P, Chiu C L, et al. Evidence for a monolayer excitonic insulator. arXiv preprint arXiv: 2010.05390, 2020
[8]
Fatemi V, Wu S, Cao Y, et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science, 2018, 362, 926 doi: 10.1126/science.aar4642
[9]
Sajadi E, Palomaki T, Fei Z Y, et al. Gate-induced superconductivity in a monolayer topological insulator. Science, 2018, 362, 922 doi: 10.1126/science.aar4426
[10]
Bistritzer R, MacDonald A H. Moire bands in twisted double-layer graphene. PNAS, 2011, 108, 12233 doi: 10.1073/pnas.1108174108
[11]
Fu L, Kane C L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys Rev Lett, 2008, 100, 096407 doi: 10.1103/PhysRevLett.100.096407
[12]
Devarakonda A, Checkelsky J G. Monolayers have the edge. Nat Phys, 2017, 13, 630 doi: 10.1038/nphys4198
[13]
Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556, 43 doi: 10.1038/nature26160
[14]
Yankowitz M, Chen S W, Polshyn H, et al. Tuning superconductivity in twisted bilayer graphene. Science, 2019, 363, 1059 doi: 10.1126/science.aav1910
[15]
Wang L, Shih E M, Ghiotto A, et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat Mater, 2020, 19, 861 doi: 10.1038/s41563-020-0708-6
[16]
Xu Y, Liu S, Rhodes D A, et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature, 2020, 587, 214 doi: 10.1038/s41586-020-2868-6
[17]
Huang X, Wang T M, Miao S N, et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat Phys, 2021, in press doi: 10.1038/s41567-021-01171-w
[18]
Regan E C, Wang D Q, Jin C H, et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 2020, 579, 359 doi: 10.1038/s41586-020-2092-4
[19]
Smoleński T, Dolgirev P E, Kuhlenkamp C, et al. Observation of Wigner crystal of electrons in a monolayer semiconductor. arXiv preprint arXiv: 2010.03078, 2020
Fig. 1.  (Color online) (a) Device schematic showing electrodes in contact with WTe2 in small selected areas without touching the edge of the sample. (b) A magnetoresistance curve taken at low temperature. Zoom-in view of data at low field is shown in the inset. Figures are adapted from Ref. [1] with permission.

[1]
Wang P, Yu G, Jia Y, et al. Landau quantization and highly mobile fermions in an insulator. Nature, 2021, 589, 225 doi: 10.1038/s41586-020-03084-9
[2]
Qian X, Liu J, Fu L, et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science, 2014, 346, 1344 doi: 10.1126/science.1256815
[3]
Tang S J, Zhang C F, Wong D, et al. Quantum spin Hall state in monolayer 1T'-WTe2. Nat Phys, 2017, 13, 683 doi: 10.1038/nphys4174
[4]
Fei Z Y, Palomaki T, Wu S F, et al. Edge conduction in monolayer WTe2. Nat Phys, 2017, 13, 677 doi: 10.1038/nphys4091
[5]
Wu S F, Fatemi V, Gibson Q D, et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science, 2018, 359, 76 doi: 10.1126/science.aan6003
[6]
Kwan Y H, Devakul T, Sondhi S L, et al. Theory of competing excitonic orders in insulating WTe2 monolayers. arXiv preprint arXiv: 2012.05255, 2020
[7]
Jia Y, Wang P, Chiu C L, et al. Evidence for a monolayer excitonic insulator. arXiv preprint arXiv: 2010.05390, 2020
[8]
Fatemi V, Wu S, Cao Y, et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science, 2018, 362, 926 doi: 10.1126/science.aar4642
[9]
Sajadi E, Palomaki T, Fei Z Y, et al. Gate-induced superconductivity in a monolayer topological insulator. Science, 2018, 362, 922 doi: 10.1126/science.aar4426
[10]
Bistritzer R, MacDonald A H. Moire bands in twisted double-layer graphene. PNAS, 2011, 108, 12233 doi: 10.1073/pnas.1108174108
[11]
Fu L, Kane C L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys Rev Lett, 2008, 100, 096407 doi: 10.1103/PhysRevLett.100.096407
[12]
Devarakonda A, Checkelsky J G. Monolayers have the edge. Nat Phys, 2017, 13, 630 doi: 10.1038/nphys4198
[13]
Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556, 43 doi: 10.1038/nature26160
[14]
Yankowitz M, Chen S W, Polshyn H, et al. Tuning superconductivity in twisted bilayer graphene. Science, 2019, 363, 1059 doi: 10.1126/science.aav1910
[15]
Wang L, Shih E M, Ghiotto A, et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat Mater, 2020, 19, 861 doi: 10.1038/s41563-020-0708-6
[16]
Xu Y, Liu S, Rhodes D A, et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature, 2020, 587, 214 doi: 10.1038/s41586-020-2868-6
[17]
Huang X, Wang T M, Miao S N, et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat Phys, 2021, in press doi: 10.1038/s41567-021-01171-w
[18]
Regan E C, Wang D Q, Jin C H, et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 2020, 579, 359 doi: 10.1038/s41586-020-2092-4
[19]
Smoleński T, Dolgirev P E, Kuhlenkamp C, et al. Observation of Wigner crystal of electrons in a monolayer semiconductor. arXiv preprint arXiv: 2010.03078, 2020
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2542 Times PDF downloads: 63 Times Cited by: 0 Times

    History

    Received: 17 January 2021 Revised: 08 March 2021 Online: Accepted Manuscript: 09 March 2021Uncorrected proof: 09 March 2021Published: 01 June 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xin Lu. Magnetic quantum oscillation in a monolayer insulator[J]. Journal of Semiconductors, 2021, 42(6): 060401. doi: 10.1088/1674-4926/42/6/060401 ****X Lu, Magnetic quantum oscillation in a monolayer insulator[J]. J. Semicond., 2021, 42(6): 060401. doi: 10.1088/1674-4926/42/6/060401.
      Citation:
      Xin Lu. Magnetic quantum oscillation in a monolayer insulator[J]. Journal of Semiconductors, 2021, 42(6): 060401. doi: 10.1088/1674-4926/42/6/060401 ****
      X Lu, Magnetic quantum oscillation in a monolayer insulator[J]. J. Semicond., 2021, 42(6): 060401. doi: 10.1088/1674-4926/42/6/060401.

      Magnetic quantum oscillation in a monolayer insulator

      doi: 10.1088/1674-4926/42/6/060401
      More Information
      • Xin Lu:earned her bachelor’s degree from Wuhan University in 2012, and her PhD from Nanyang Technological University in 2017. Subsequently, Lu joined Prof. Ajit Srivastava’s group at Emory University as a postdoc. Since January 2021, Lu has started as an Assistant Professor in the Department of Physics and Engineering Physics at Tulane University
      • Corresponding author: xlu5@tulane.edu
      • Received Date: 2021-01-17
      • Revised Date: 2021-03-08
      • Published Date: 2021-06-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return