J. Semicond. > 2021, Volume 42 > Issue 7 > 074102

ARTICLES

Fabrication, characterization, numerical simulation and compact modeling of P3HT based organic thin film transistors

Shubham Dadhich1, A. D. D. Dwivedi1, and Arun Kumar Singh2,

+ Author Affiliations

 Corresponding author: A. D. D. Dwivedi, adddwivedi@gmail.com; Arun Kumar Singh, arunsingh.itbhu@gmail.com

DOI: 10.1088/1674-4926/42/7/074102

PDF

Turn off MathJax

Abstract: This paper presents the fabrication, characterization and numerical simulation of poly-3-hexylthiophene (P3HT)-based bottom-gate bottom-contact (BGBC) organic thin film transistors (OTFTs). The simulation is based on a drift diffusion charge transport model and density of defect states (DOS) for the traps in the band gap of the P3HT based channel. It combines two mobility models, a hopping mobility model and the Poole–Frenkel mobility model. It also describes the defect density of states (DOS) for both tail and deep states. The model takes into account all the operating regions of the OTFT and includes sub-threshold and above threshold characteristics of OTFTs. The model has been verified by comparing the numerically simulated results with the experimental results. This model is also used to simulate different structure in four configurations of OTFT e.g. bottom-gate bottom-contact (BGBC), bottom-gate top-contact (BGTC), top-gate bottom-contact (TGBC) and top-gate top-contact (TGTC) configurations of the OTFTs. We also present the compact modeling and model parameter extraction of the P3HT-based OTFTs. The extracted compact model has been further applied in a p-channel OTFT-based inverter and three stage ring oscillator circuit simulation.



[1]
Guo X J, Xu Y, Ogier S, et al. Current status and opportunities of organic thin-film transistor technologies. IEEE Trans Electron Devices, 2017, 64, 1906 doi: 10.1109/TED.2017.2677086
[2]
Ding L, Zhao J Q, Huang Y K, et al. Flexible-blade coating of small molecule organic semiconductor for low voltage organic field effect transistor. IEEE Electron Device Lett, 2017, 38, 338 doi: 10.1109/LED.2017.2657651
[3]
Jeong J, Kim M, Lee S H, et al. Self-defined short channel formation with micromolded separator and inkjet-printed source/drain electrodes in OTFTs. IEEE Electron Device Lett, 2011, 32, 1758 doi: 10.1109/LED.2011.2169646
[4]
Kim S H, Lee S H, Kim Y G, et al. Ink-jet-printed organic thin-film transistors for low-voltage-driven CMOS circuits with solution-processed AlOx gate insulator. IEEE Electron Device Lett, 2013, 34, 307 doi: 10.1109/LED.2012.2228461
[5]
Marien H, Steyaert M S J, van Veenendaal E, et al. Analog building blocks for organic smart sensor systems in organic thin-film transistor technology on flexible plastic foil. IEEE J Solid-State Circuits, 2012, 47, 1712 doi: 10.1109/JSSC.2012.2191038
[6]
Scarpa G, Idzko A L, Münzer A, et al. Low-cost solution-processable organic thin-film transistors for (bio)sensing applications. 2011 IEEE Sensors, 2011, 1581
[7]
Mohamad K A, Alias A, Saad I, et al. All-polymer organic field-effect transistors with memory element. 2012 Third International Conference on Intelligent Systems Modelling and Simulation, 2012, 743
[8]
Xu M L, Guo S X, Xiang L Y, et al. High mobility flexible ferroelectric organic transistor nonvolatile memory with an ultrathin AlOx interfacial layer. IEEE Trans Electron Devices, 2018, 65, 1113 doi: 10.1109/TED.2018.2797936
[9]
Wang A, Kymissis I, Bulovic V, et al. Engineering density of semiconductor-dielectric interface states to modulate threshold voltage in OFETs. IEEE Trans Electron Devices, 2006, 53, 9 doi: 10.1109/TED.2005.860633
[10]
Ramos B, Lopes M, Buso D, et al. Performance enhancement in N-channel organic field-effect transistors using ferroelectric material as a gate dielectric. IEEE Trans Nanotechnol, 2017, 16, 773 doi: 10.1109/TNANO.2017.2683201
[11]
Feng L R, Zhao J Q, Tang W, et al. Solution processed organic thin-film transistors with hybrid low/high voltage operation. J Disp Technol, 2014, 10, 971 doi: 10.1109/JDT.2014.2344040
[12]
Mizukami M, Oku S, Cho S I, et al. A solution-processed organic thin-film transistor backplane for flexible multiphoton emission organic light-emitting diode displays. IEEE Electron Device Lett, 2015, 36, 841 doi: 10.1109/LED.2015.2443184
[13]
Takshi A, Dimopoulos A, Madden J D. Simulation of a low-voltage organic transistor compatible with printing methods. IEEE Trans Electron Devices, 2008, 55, 276 doi: 10.1109/TED.2007.910615
[14]
Jiménez Tejada J A, López Varo P, Cammidge A N, et al. Compact modeling of organic thin-film transistors with solution processed octadecyl substituted tetrabenzotriazaporphyrin as an active layer. IEEE Trans Electron Devices, 2017, 64, 2629 doi: 10.1109/TED.2017.2690976
[15]
Saini D, Saini S, Negi S. Modelling and comparison of single gate and dual gate organic thin film transistor. 2016 International Conference on Emerging Trends in Communication Technologies (ETCT), 2016, 1
[16]
TCAD Atlas User’s Manual, SILVACO® international, 2018
[17]
Dwivedi A D D, Dwivedi R D, Dwivedi R D, et al. Numerical simulation of P3HT based organic thin film transistors (OTFTs). Int J Microelectron Digit Integr Circuits, 2015, 1, 13
[18]
Tiwari S, Singh A K, Joshi L, et al. Poly-3-hexylthiophene based organic field-effect transistor: Detection of low concentration of ammonia. Sens Actuators B, 2012, 171/172, 962 doi: 10.1016/j.snb.2012.06.010
[19]
Ortiz-Conde A, Garcı́a Sánchez F J, Liou J J, et al. A review of recent MOSFET threshold voltage extraction methods. Microelectron Reliab, 2002, 42, 583 doi: 10.1016/S0026-2714(02)00027-6
[20]
Han C Y, Tang W M, Lai P T. High-mobility pentacene organic thin-film transistor with LaxNb1– xOy gate dielectric fabricated on vacuum tape. IEEE Trans Electron Devices, 2017, 64, 1716 doi: 10.1109/TED.2017.2661806
[21]
Singh S, Kumar M. Modeling of on-off current and cutoff frequency in organic thin film transistors. Int J Innov Technol Explor Eng, 2020, 9, 3028 doi: 10.35940/ijitee.C8063.019320
[22]
Vyas S, Dwivedi A D D, Dwivedi R D. Effect of gate dielectric on the performance of ZnO based thin film transistor. Superlattices Microstruct, 2018, 120, 223 doi: 10.1016/j.spmi.2018.05.040
[23]
Dwivedi A D D. Numerical simulation and spice modeling of organic thin film transistors (OTFTs). Int J Adv App Phy Res, 2014, 1, 14 doi: 10.15379/2408-977X.2014.01.02.3
[24]
Kumari P, Dwivedi A D D. Modeling and simulation of pentacene based organic thin film transistors with organic gate dielectrics. J Microelectron Solid State Devices, 2017, 4, 13 doi: 10.37591/jomsd.v4i3.275
[25]
Kushwah N S, Dwivedi A D D. Computer modeling of organic thin film transistors (OTFTs) using Verilog-A. J Microelectron Solid State Devices, 2018, 5, 1 doi: 10.37591/jomsd.v5i1.588
[26]
Kumari P, Dwivedi A D D. Numerical simulation and characteriation of pentacene based organic thin film transistors with top and bottom gate configurations. Global J Res Eng, 2019
[27]
Dwivedi A D D, Kumari P. TCAD simulation and performance analysis of single and dual gate OTFTs. Surf Rev Lett, 2020, 27, 1950145 doi: 10.1142/S0218625X19501452
[28]
Dwivedi A D D, Dhar Dwivedi R, Dhar Dwivedi R, et al. Simulation and compact modeling of organic thin film transistors (OTFTs) for circuit simulation. Int J Adv App Phy Res, 2019, 6, 1 doi: 10.15379/2408-977X.2019.06.01.01
[29]
Iñiguez B, Picos R, Veksler D, et al. Universal compact model for long- and short-channel thin-film transistors. Solid-State Electron, 2008, 52, 400 doi: 10.1016/j.sse.2007.10.027
[30]
Estrada M, Cerdeira A, Puigdollers J, et al. Accurate modeling and parameter extraction method for organic TFTs. Solid-State Electron, 2005, 49, 1009 doi: 10.1016/j.sse.2005.02.004
[31]
Dwivedi A D D, Jain S K, Dwivedi R D, et al. Numerical simulation and compact modeling of low voltage pentacene based OTFTs. J Sci: Adv Mater Devices, 2019, 4, 561 doi: 10.1016/j.jsamd.2019.10.006
[32]
UTMOST IV and Smart Spice models manual. Silvaco International, Santa Clara, CA, USA, 2018
[33]
Dwivedi A D D, Jain S K, Dwivedi R D, et al. Numerical simulation and compact modeling of thin film transistors for future flexible electronics. Hybrid Nanomater: Flexible Electron Mater, 2020
[34]
Chaudhary V, Kumar N, Singh A K. Solubility dependent trap density in poly (3-hexylthiophene) organic Schottky diodes at room temperature. Synth Met, 2019, 250, 88 doi: 10.1016/j.synthmet.2019.03.006
[35]
Chaudhary V, Pandey R K, Prakash R, et al. Self-assembled H-aggregation induced high performance poly (3-hexylthiophene) Schottky diode. J Appl Phys, 2017, 122, 225501 doi: 10.1063/1.4997554
[36]
De Vusser S, Genoe J, Heremans P. Influence of transistor parameters on the noise margin of organic digital circuits. IEEE Trans Electron Devices, 2006, 53, 601 doi: 10.1109/TED.2006.870876
[37]
Omar S, Mandal S, Ashok A, et al. Organic inverter: Theoretical analysis using load matching technique. Microelectron Reliab, 2011, 51, 2173 doi: 10.1016/j.microrel.2011.05.014
[38]
Huang T C, Fukuda K, Lo C M, et al. Pseudo-CMOS: A design style for low-cost and robust flexible electronics. IEEE Trans Electron Devices, 2011, 58, 141 doi: 10.1109/TED.2010.2088127
[39]
Jain S K, Dadhich S, Dwivedi A D D. Numerical simulation based comparative study of P3HT based top contact and bottom contact OTFTs. J Electron Des Technol, 2020, 10, 27 doi: 10.37591/joedt.v10i3.3390
Fig. 1.  (Color online) Structure of the P3HT-based bottom-gate bottom-contact (BGBC) OTFT.

Fig. 2.  (Color online) (a) UV–Vis spectra of P3HT thin film on glass [(αhυ)2 versus plot has been shown in the inset] and (b) AFM image of P3HT thin film on the SiO2/Si substrate.

Fig. 3.  The transfer ($ {I_{{\rm{DS}}}} - {V_{{\rm{GS}}}}$) characteristics of P3HT-based bottom-gate bottom-contact (BGBT) OTFTs. Solid lines show TCAD simulation and symbols show experimentally measured results.

Fig. 4.  (Color online) The output (${I_{{\rm{DS}}}}{{-}}{V_{{\rm{DS}}}}$) characteristics of P3HT-based bottom-gate bottom-contact (BGBT) OTFTs. Solid lines showing TCAD simulation and symbols showing experimentally measured results.

Fig. 5.  The ${{\rm{(}}{I_{{\rm{DS}}}}{\rm{)}}^{{\rm{1/2}}}}{-}{V_{{\rm{GS}}}}$ characteristics of OTFT.

Fig. 6.  (Color online) Different structure configurations of OTFT. (a) Bottom-gate bottom-contact. (b) Bottom-gate top-contact. (c) Top-gate bottom-contact. (d) Top-gate top-contact.

Fig. 7.  (Color online) I–V characteristic of BGBC structure. (a) Transfer characteristics. (b) Output characteristics.

Fig. 8.  (Color online) I–V characteristic of BGTC structure. (a) Transfer characteristics. (b) Output characteristics.

Fig. 9.  (Color online) I–V characteristic of TGBC structure. (a) Transfer characteristics. (b) Output characteristics.

Fig. 10.  (Color online) I–V characteristic of TGTC structure. (a) Transfer characteristics. (b) Output characteristics.

Fig. 11.  Equivalent circuit of UOTFT model[31, 38].

Fig. 12.  (Color online) (a) Comparisons of transfer characteristics of the experimentally measured data with the compact model-based simulated data. (b) Comparisons of output characteristics of the experimentally measured data with the compact model-based simulated data. Symbols show experimentally measured data and solid line show compact model-based simulated data.

Fig. 13.  (a) A circuit diagram of the inverter circuit used for assessing the simulation results. (b) Voltage transfer characteristics of the inverter circuit shown for different W/L ratios of driver OTFT. (c) Transient characteristics of the inverter with driver OTFT has W = 100 μm and L = 50 μm and load OTFT has W = 1000 μm and L = 50 μm.

Fig. 14.  (a) Circuit diagram of the three stage ring oscillator circuits. (b) Ring oscillator output waveform.

Table 1.   Material parameters for P3HT.

ParameterValue
Effective density of states in the conduction band (Nc)2 × 1021 cm–3[17]
Effective density of states in the valance band (Nv)2 × 1021 cm–3[17]
Organic Semiconductor Dielectric constants (ε)3.0[17]
Energy gap at 300 K (Eg)1.9 eV (experimental value, see Fig. 2(a))
Electron affinity (χ)3.5 eV[17]
Electron mobility (μn)1 × 10–4 cm2/(V·s)
Hole Mobility (μp)5 × 10–4 cm2/(V·s)
Acceptor concentration (NA)2 × 1017 cm–3[31]
DownLoad: CSV

Table 2.   DOS parameter for P3HT-based OTFT.

ParameterValue
NTA1.0 × 1012 cm–3/eV
NTD1.0 × 1012 cm–3/eV
NGA1.0 × 1016 cm–3/eV
NGD1.0 × 1012 cm–3/eV
EGA0.5 eV
EGD0.7 eV
WTA0.5 eV
WTD0.7 eV
WGA0.4 eV
WGD0.1 eV
DownLoad: CSV

Table 3.   Double peak DOS parameter for P3HT.

ParameterValue
NIA1.0 × 1014 cm–3/eV
NA1.0 × 1015 cm–3/eV
NID1.0 × 1014 cm–3/eV
ND5.0 × 1014 cm–3/eV
EA0.5 eV
ED0.7 eV
DownLoad: CSV

Table 4.   Hopping mobility model parameters of P3HT.

ParameterValue
$ {\beta _{{\rm{n\_hop}}}} $1.6
${\gamma _{{\rm{n\_hop}}}}$2.0 × 108 cm–1
$V_{ { {0\rm{n\_hop} } } }$4.0 × 1011 Hz
${\beta _{{\rm{p\_hop}}}}$1.7
${\gamma _{{\rm{p\_hop}}}}$9.0 × 108 cm–1
$V_{ { {\rm{ 0p\_hop} } } }$1.0 × 1012 Hz
DownLoad: CSV

Table 5.   Pool-Frenkel mobility model parameter for P3HT-based OTFT.

ParameterValue
$ {\delta _{{\rm{n\_pf}}}} $6.524 × 10–5 eV
${\beta _{{\rm{n\_pf}}}}$1.243 × 10–2 eV(cm/V)1/2
${\gamma _{{\rm{n\_pf}}}}$1.545 × 10–5 (cm/V)1/2
${\delta _{{\rm{p\_pf}}}}$1.792 × 10–2 eV
${\beta _{{\rm{p\_pf}}}}$7.758 × 10–5 eV(cm/V)1/2
${\gamma _{{\rm{p\_pf}}}}$1.807 × 10–5 (cm/V)1/2
Interface charge (Qf)1 × 1010 cm–2
DownLoad: CSV

Table 6.   Performance parameters of simulated P3HT based OTFTs.

ParameterSimulatedExperimented
Cox (nF/cm2)11.5 10
Vt (V)1415
Gm (S)1.48 × 10–9 1.61 × 10–9
µlin (cm2/(V·s))5.36 × 10–5 6.70 × 10–5
µsat (cm2/(V·s))5.20 × 10–4 1.85 × 10–4
SS (V/dec)14.6111.29
Ion/Ioff103.5284.69
DownLoad: CSV

Table 7.   Performance parameters comparison of four structures of P3HT-based OTFT.

ParameterBGBCBGTCTGBCTGTC
Vt (V)14131816
Gm (S)1.49 × 10–92.60 × 10–9 2.90 ×10–73.10 × 10–6
µlin (cm2/(V·s))5.36 × 10–59.42 × 10–51.05 × 10–21.12 × 10–1
µsat (cm2/(V·s))5.20 × 10–41.53 × 10–32.19 ×10–28.73 × 10–3
SS (V/dec)14.616.32.522.29
Ion/Ioff1.03 × 1029.25 × 1027.50 × 1012.23 ×102
DownLoad: CSV

Table 8.   Compact model parameters extracted for P3HT-based OTFT.

ParameterSymbolUnitValues
The thickness of gate insulatortim300 × 10–9
Relative dielectric permittivity of the insulator at gateϵr3.37
Relative dielectric permittivity of the semiconductorϵsc3.0
Zero bias threshold voltageVTV14.57
Trap densitystates Characteristic voltageV0V1.92
Characteristic effective accumulation channelmobilityµeffm2/(V·s)7.14 × 10–7
Characteristic voltage of the effective mobilityVaccV9.05
Saturation modulation parametera(T)3.25
Output conductance parameter$ \lambda $1/V0.0
Knee shape parameterm0.20
Power law mobility parameterα0.99
Leakage saturation currentIOLA3.1 × 10–9
Leakage current gate bias non-ideality factorNGSL5.34 × 10–3
Leakage current drain bias non-ideality factorNDSL3.18 × 10–9
The minimum bulk conductance$ {\sigma }_{0} $S1.20 × 10–12
Contact ResistanceRS + RDMΩ262.81
DownLoad: CSV

Table 9.   Low and high logic states used in logic circuit simulation based on P3HT based OTFTs.

${V}_{ {\rm{in} } }\ (\rm V)$$ {V}_{{\rm{in}}} $ logic state${V}_{ {\rm{out} } }\ (\rm V)$$ {V}_{{\rm{out}}} $ logic state
–1000 ‘Low’01 ‘High’
01 ‘High’–1000 ‘Low’
DownLoad: CSV
[1]
Guo X J, Xu Y, Ogier S, et al. Current status and opportunities of organic thin-film transistor technologies. IEEE Trans Electron Devices, 2017, 64, 1906 doi: 10.1109/TED.2017.2677086
[2]
Ding L, Zhao J Q, Huang Y K, et al. Flexible-blade coating of small molecule organic semiconductor for low voltage organic field effect transistor. IEEE Electron Device Lett, 2017, 38, 338 doi: 10.1109/LED.2017.2657651
[3]
Jeong J, Kim M, Lee S H, et al. Self-defined short channel formation with micromolded separator and inkjet-printed source/drain electrodes in OTFTs. IEEE Electron Device Lett, 2011, 32, 1758 doi: 10.1109/LED.2011.2169646
[4]
Kim S H, Lee S H, Kim Y G, et al. Ink-jet-printed organic thin-film transistors for low-voltage-driven CMOS circuits with solution-processed AlOx gate insulator. IEEE Electron Device Lett, 2013, 34, 307 doi: 10.1109/LED.2012.2228461
[5]
Marien H, Steyaert M S J, van Veenendaal E, et al. Analog building blocks for organic smart sensor systems in organic thin-film transistor technology on flexible plastic foil. IEEE J Solid-State Circuits, 2012, 47, 1712 doi: 10.1109/JSSC.2012.2191038
[6]
Scarpa G, Idzko A L, Münzer A, et al. Low-cost solution-processable organic thin-film transistors for (bio)sensing applications. 2011 IEEE Sensors, 2011, 1581
[7]
Mohamad K A, Alias A, Saad I, et al. All-polymer organic field-effect transistors with memory element. 2012 Third International Conference on Intelligent Systems Modelling and Simulation, 2012, 743
[8]
Xu M L, Guo S X, Xiang L Y, et al. High mobility flexible ferroelectric organic transistor nonvolatile memory with an ultrathin AlOx interfacial layer. IEEE Trans Electron Devices, 2018, 65, 1113 doi: 10.1109/TED.2018.2797936
[9]
Wang A, Kymissis I, Bulovic V, et al. Engineering density of semiconductor-dielectric interface states to modulate threshold voltage in OFETs. IEEE Trans Electron Devices, 2006, 53, 9 doi: 10.1109/TED.2005.860633
[10]
Ramos B, Lopes M, Buso D, et al. Performance enhancement in N-channel organic field-effect transistors using ferroelectric material as a gate dielectric. IEEE Trans Nanotechnol, 2017, 16, 773 doi: 10.1109/TNANO.2017.2683201
[11]
Feng L R, Zhao J Q, Tang W, et al. Solution processed organic thin-film transistors with hybrid low/high voltage operation. J Disp Technol, 2014, 10, 971 doi: 10.1109/JDT.2014.2344040
[12]
Mizukami M, Oku S, Cho S I, et al. A solution-processed organic thin-film transistor backplane for flexible multiphoton emission organic light-emitting diode displays. IEEE Electron Device Lett, 2015, 36, 841 doi: 10.1109/LED.2015.2443184
[13]
Takshi A, Dimopoulos A, Madden J D. Simulation of a low-voltage organic transistor compatible with printing methods. IEEE Trans Electron Devices, 2008, 55, 276 doi: 10.1109/TED.2007.910615
[14]
Jiménez Tejada J A, López Varo P, Cammidge A N, et al. Compact modeling of organic thin-film transistors with solution processed octadecyl substituted tetrabenzotriazaporphyrin as an active layer. IEEE Trans Electron Devices, 2017, 64, 2629 doi: 10.1109/TED.2017.2690976
[15]
Saini D, Saini S, Negi S. Modelling and comparison of single gate and dual gate organic thin film transistor. 2016 International Conference on Emerging Trends in Communication Technologies (ETCT), 2016, 1
[16]
TCAD Atlas User’s Manual, SILVACO® international, 2018
[17]
Dwivedi A D D, Dwivedi R D, Dwivedi R D, et al. Numerical simulation of P3HT based organic thin film transistors (OTFTs). Int J Microelectron Digit Integr Circuits, 2015, 1, 13
[18]
Tiwari S, Singh A K, Joshi L, et al. Poly-3-hexylthiophene based organic field-effect transistor: Detection of low concentration of ammonia. Sens Actuators B, 2012, 171/172, 962 doi: 10.1016/j.snb.2012.06.010
[19]
Ortiz-Conde A, Garcı́a Sánchez F J, Liou J J, et al. A review of recent MOSFET threshold voltage extraction methods. Microelectron Reliab, 2002, 42, 583 doi: 10.1016/S0026-2714(02)00027-6
[20]
Han C Y, Tang W M, Lai P T. High-mobility pentacene organic thin-film transistor with LaxNb1– xOy gate dielectric fabricated on vacuum tape. IEEE Trans Electron Devices, 2017, 64, 1716 doi: 10.1109/TED.2017.2661806
[21]
Singh S, Kumar M. Modeling of on-off current and cutoff frequency in organic thin film transistors. Int J Innov Technol Explor Eng, 2020, 9, 3028 doi: 10.35940/ijitee.C8063.019320
[22]
Vyas S, Dwivedi A D D, Dwivedi R D. Effect of gate dielectric on the performance of ZnO based thin film transistor. Superlattices Microstruct, 2018, 120, 223 doi: 10.1016/j.spmi.2018.05.040
[23]
Dwivedi A D D. Numerical simulation and spice modeling of organic thin film transistors (OTFTs). Int J Adv App Phy Res, 2014, 1, 14 doi: 10.15379/2408-977X.2014.01.02.3
[24]
Kumari P, Dwivedi A D D. Modeling and simulation of pentacene based organic thin film transistors with organic gate dielectrics. J Microelectron Solid State Devices, 2017, 4, 13 doi: 10.37591/jomsd.v4i3.275
[25]
Kushwah N S, Dwivedi A D D. Computer modeling of organic thin film transistors (OTFTs) using Verilog-A. J Microelectron Solid State Devices, 2018, 5, 1 doi: 10.37591/jomsd.v5i1.588
[26]
Kumari P, Dwivedi A D D. Numerical simulation and characteriation of pentacene based organic thin film transistors with top and bottom gate configurations. Global J Res Eng, 2019
[27]
Dwivedi A D D, Kumari P. TCAD simulation and performance analysis of single and dual gate OTFTs. Surf Rev Lett, 2020, 27, 1950145 doi: 10.1142/S0218625X19501452
[28]
Dwivedi A D D, Dhar Dwivedi R, Dhar Dwivedi R, et al. Simulation and compact modeling of organic thin film transistors (OTFTs) for circuit simulation. Int J Adv App Phy Res, 2019, 6, 1 doi: 10.15379/2408-977X.2019.06.01.01
[29]
Iñiguez B, Picos R, Veksler D, et al. Universal compact model for long- and short-channel thin-film transistors. Solid-State Electron, 2008, 52, 400 doi: 10.1016/j.sse.2007.10.027
[30]
Estrada M, Cerdeira A, Puigdollers J, et al. Accurate modeling and parameter extraction method for organic TFTs. Solid-State Electron, 2005, 49, 1009 doi: 10.1016/j.sse.2005.02.004
[31]
Dwivedi A D D, Jain S K, Dwivedi R D, et al. Numerical simulation and compact modeling of low voltage pentacene based OTFTs. J Sci: Adv Mater Devices, 2019, 4, 561 doi: 10.1016/j.jsamd.2019.10.006
[32]
UTMOST IV and Smart Spice models manual. Silvaco International, Santa Clara, CA, USA, 2018
[33]
Dwivedi A D D, Jain S K, Dwivedi R D, et al. Numerical simulation and compact modeling of thin film transistors for future flexible electronics. Hybrid Nanomater: Flexible Electron Mater, 2020
[34]
Chaudhary V, Kumar N, Singh A K. Solubility dependent trap density in poly (3-hexylthiophene) organic Schottky diodes at room temperature. Synth Met, 2019, 250, 88 doi: 10.1016/j.synthmet.2019.03.006
[35]
Chaudhary V, Pandey R K, Prakash R, et al. Self-assembled H-aggregation induced high performance poly (3-hexylthiophene) Schottky diode. J Appl Phys, 2017, 122, 225501 doi: 10.1063/1.4997554
[36]
De Vusser S, Genoe J, Heremans P. Influence of transistor parameters on the noise margin of organic digital circuits. IEEE Trans Electron Devices, 2006, 53, 601 doi: 10.1109/TED.2006.870876
[37]
Omar S, Mandal S, Ashok A, et al. Organic inverter: Theoretical analysis using load matching technique. Microelectron Reliab, 2011, 51, 2173 doi: 10.1016/j.microrel.2011.05.014
[38]
Huang T C, Fukuda K, Lo C M, et al. Pseudo-CMOS: A design style for low-cost and robust flexible electronics. IEEE Trans Electron Devices, 2011, 58, 141 doi: 10.1109/TED.2010.2088127
[39]
Jain S K, Dadhich S, Dwivedi A D D. Numerical simulation based comparative study of P3HT based top contact and bottom contact OTFTs. J Electron Des Technol, 2020, 10, 27 doi: 10.37591/joedt.v10i3.3390
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3809 Times PDF downloads: 131 Times Cited by: 0 Times

    History

    Received: 20 January 2021 Revised: 01 March 2021 Online: Accepted Manuscript: 21 April 2021Uncorrected proof: 25 April 2021Published: 05 July 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shubham Dadhich, A. D. D. Dwivedi, Arun Kumar Singh. Fabrication, characterization, numerical simulation and compact modeling of P3HT based organic thin film transistors[J]. Journal of Semiconductors, 2021, 42(7): 074102. doi: 10.1088/1674-4926/42/7/074102 ****S Dadhich, A D D Dwivedi, A K Singh, Fabrication, characterization, numerical simulation and compact modeling of P3HT based organic thin film transistors[J]. J. Semicond., 2021, 42(7): 074102. doi: 10.1088/1674-4926/42/7/074102.
      Citation:
      Shubham Dadhich, A. D. D. Dwivedi, Arun Kumar Singh. Fabrication, characterization, numerical simulation and compact modeling of P3HT based organic thin film transistors[J]. Journal of Semiconductors, 2021, 42(7): 074102. doi: 10.1088/1674-4926/42/7/074102 ****
      S Dadhich, A D D Dwivedi, A K Singh, Fabrication, characterization, numerical simulation and compact modeling of P3HT based organic thin film transistors[J]. J. Semicond., 2021, 42(7): 074102. doi: 10.1088/1674-4926/42/7/074102.

      Fabrication, characterization, numerical simulation and compact modeling of P3HT based organic thin film transistors

      DOI: 10.1088/1674-4926/42/7/074102
      More Information
      • Shubham Dadhich:has worked as JRF in SERB, DST funded Project No. ECR/2017/000179. Currently he is pursuing his M. Tech (VLSI) and Ph. D. (dual degree) in the area of Numerical Simulation and Compact Modeling of Organic Thin Film Transistors under the guidance of Dr Arun Dev Dhar Dwivedi
      • A. D. D. Dwivedi:(M’12–SM’16) has received his Ph.D. degree in Electronics Engineering from IIT BHU Varanasi, India in 2010. Currently he is working as an Associate Professor in School of Electronics Engineering (SENSE), Department of Micro and Nano Electronics at VIT University Vellore, Tamil Nadu- 632014, India. His research interest includes micro and nano electronic devices and circuits, numerical simulation and compact modeling of OTFTs, metal oxide semiconductor based thin film transistors etc., flexible electronics and optoelectronics
      • Arun Kumar Singh has received his Ph.D. from School of Material Science and technology (SMST), IIT (BHU) Varanasi in 2010. Currently he is working as an Associate Professor in the Department of Pure and Applied Physics at Guru Ghasidas Vishwavidyalay Bilaspur, C.G. India. He has published more than 50 papers in journals and 30 conference papers. His research interest includes conducting polymers, organic electronics etc
      • Corresponding author: adddwivedi@gmail.comarunsingh.itbhu@gmail.com
      • Received Date: 2021-01-20
      • Revised Date: 2021-03-01
      • Published Date: 2021-07-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return