Citation: |
Shubham Dadhich, A. D. D. Dwivedi, Arun Kumar Singh. Fabrication, characterization, numerical simulation and compact modeling of P3HT based organic thin film transistors[J]. Journal of Semiconductors, 2021, 42(7): 074102. doi: 10.1088/1674-4926/42/7/074102
****
S Dadhich, A D D Dwivedi, A K Singh, Fabrication, characterization, numerical simulation and compact modeling of P3HT based organic thin film transistors[J]. J. Semicond., 2021, 42(7): 074102. doi: 10.1088/1674-4926/42/7/074102.
|
Fabrication, characterization, numerical simulation and compact modeling of P3HT based organic thin film transistors
DOI: 10.1088/1674-4926/42/7/074102
More Information
-
Abstract
This paper presents the fabrication, characterization and numerical simulation of poly-3-hexylthiophene (P3HT)-based bottom-gate bottom-contact (BGBC) organic thin film transistors (OTFTs). The simulation is based on a drift diffusion charge transport model and density of defect states (DOS) for the traps in the band gap of the P3HT based channel. It combines two mobility models, a hopping mobility model and the Poole–Frenkel mobility model. It also describes the defect density of states (DOS) for both tail and deep states. The model takes into account all the operating regions of the OTFT and includes sub-threshold and above threshold characteristics of OTFTs. The model has been verified by comparing the numerically simulated results with the experimental results. This model is also used to simulate different structure in four configurations of OTFT e.g. bottom-gate bottom-contact (BGBC), bottom-gate top-contact (BGTC), top-gate bottom-contact (TGBC) and top-gate top-contact (TGTC) configurations of the OTFTs. We also present the compact modeling and model parameter extraction of the P3HT-based OTFTs. The extracted compact model has been further applied in a p-channel OTFT-based inverter and three stage ring oscillator circuit simulation. -
References
[1] Guo X J, Xu Y, Ogier S, et al. Current status and opportunities of organic thin-film transistor technologies. IEEE Trans Electron Devices, 2017, 64, 1906 doi: 10.1109/TED.2017.2677086[2] Ding L, Zhao J Q, Huang Y K, et al. Flexible-blade coating of small molecule organic semiconductor for low voltage organic field effect transistor. IEEE Electron Device Lett, 2017, 38, 338 doi: 10.1109/LED.2017.2657651[3] Jeong J, Kim M, Lee S H, et al. Self-defined short channel formation with micromolded separator and inkjet-printed source/drain electrodes in OTFTs. IEEE Electron Device Lett, 2011, 32, 1758 doi: 10.1109/LED.2011.2169646[4] Kim S H, Lee S H, Kim Y G, et al. Ink-jet-printed organic thin-film transistors for low-voltage-driven CMOS circuits with solution-processed AlOx gate insulator. IEEE Electron Device Lett, 2013, 34, 307 doi: 10.1109/LED.2012.2228461[5] Marien H, Steyaert M S J, van Veenendaal E, et al. Analog building blocks for organic smart sensor systems in organic thin-film transistor technology on flexible plastic foil. IEEE J Solid-State Circuits, 2012, 47, 1712 doi: 10.1109/JSSC.2012.2191038[6] Scarpa G, Idzko A L, Münzer A, et al. Low-cost solution-processable organic thin-film transistors for (bio)sensing applications. 2011 IEEE Sensors, 2011, 1581[7] Mohamad K A, Alias A, Saad I, et al. All-polymer organic field-effect transistors with memory element. 2012 Third International Conference on Intelligent Systems Modelling and Simulation, 2012, 743[8] Xu M L, Guo S X, Xiang L Y, et al. High mobility flexible ferroelectric organic transistor nonvolatile memory with an ultrathin AlOx interfacial layer. IEEE Trans Electron Devices, 2018, 65, 1113 doi: 10.1109/TED.2018.2797936[9] Wang A, Kymissis I, Bulovic V, et al. Engineering density of semiconductor-dielectric interface states to modulate threshold voltage in OFETs. IEEE Trans Electron Devices, 2006, 53, 9 doi: 10.1109/TED.2005.860633[10] Ramos B, Lopes M, Buso D, et al. Performance enhancement in N-channel organic field-effect transistors using ferroelectric material as a gate dielectric. IEEE Trans Nanotechnol, 2017, 16, 773 doi: 10.1109/TNANO.2017.2683201[11] Feng L R, Zhao J Q, Tang W, et al. Solution processed organic thin-film transistors with hybrid low/high voltage operation. J Disp Technol, 2014, 10, 971 doi: 10.1109/JDT.2014.2344040[12] Mizukami M, Oku S, Cho S I, et al. A solution-processed organic thin-film transistor backplane for flexible multiphoton emission organic light-emitting diode displays. IEEE Electron Device Lett, 2015, 36, 841 doi: 10.1109/LED.2015.2443184[13] Takshi A, Dimopoulos A, Madden J D. Simulation of a low-voltage organic transistor compatible with printing methods. IEEE Trans Electron Devices, 2008, 55, 276 doi: 10.1109/TED.2007.910615[14] Jiménez Tejada J A, López Varo P, Cammidge A N, et al. Compact modeling of organic thin-film transistors with solution processed octadecyl substituted tetrabenzotriazaporphyrin as an active layer. IEEE Trans Electron Devices, 2017, 64, 2629 doi: 10.1109/TED.2017.2690976[15] Saini D, Saini S, Negi S. Modelling and comparison of single gate and dual gate organic thin film transistor. 2016 International Conference on Emerging Trends in Communication Technologies (ETCT), 2016, 1[16] TCAD Atlas User’s Manual, SILVACO® international, 2018[17] Dwivedi A D D, Dwivedi R D, Dwivedi R D, et al. Numerical simulation of P3HT based organic thin film transistors (OTFTs). Int J Microelectron Digit Integr Circuits, 2015, 1, 13[18] Tiwari S, Singh A K, Joshi L, et al. Poly-3-hexylthiophene based organic field-effect transistor: Detection of low concentration of ammonia. Sens Actuators B, 2012, 171/172, 962 doi: 10.1016/j.snb.2012.06.010[19] Ortiz-Conde A, Garcı́a Sánchez F J, Liou J J, et al. A review of recent MOSFET threshold voltage extraction methods. Microelectron Reliab, 2002, 42, 583 doi: 10.1016/S0026-2714(02)00027-6[20] Han C Y, Tang W M, Lai P T. High-mobility pentacene organic thin-film transistor with LaxNb1– xOy gate dielectric fabricated on vacuum tape. IEEE Trans Electron Devices, 2017, 64, 1716 doi: 10.1109/TED.2017.2661806[21] Singh S, Kumar M. Modeling of on-off current and cutoff frequency in organic thin film transistors. Int J Innov Technol Explor Eng, 2020, 9, 3028 doi: 10.35940/ijitee.C8063.019320[22] Vyas S, Dwivedi A D D, Dwivedi R D. Effect of gate dielectric on the performance of ZnO based thin film transistor. Superlattices Microstruct, 2018, 120, 223 doi: 10.1016/j.spmi.2018.05.040[23] Dwivedi A D D. Numerical simulation and spice modeling of organic thin film transistors (OTFTs). Int J Adv App Phy Res, 2014, 1, 14 doi: 10.15379/2408-977X.2014.01.02.3[24] Kumari P, Dwivedi A D D. Modeling and simulation of pentacene based organic thin film transistors with organic gate dielectrics. J Microelectron Solid State Devices, 2017, 4, 13 doi: 10.37591/jomsd.v4i3.275[25] Kushwah N S, Dwivedi A D D. Computer modeling of organic thin film transistors (OTFTs) using Verilog-A. J Microelectron Solid State Devices, 2018, 5, 1 doi: 10.37591/jomsd.v5i1.588[26] Kumari P, Dwivedi A D D. Numerical simulation and characteriation of pentacene based organic thin film transistors with top and bottom gate configurations. Global J Res Eng, 2019[27] Dwivedi A D D, Kumari P. TCAD simulation and performance analysis of single and dual gate OTFTs. Surf Rev Lett, 2020, 27, 1950145 doi: 10.1142/S0218625X19501452[28] Dwivedi A D D, Dhar Dwivedi R, Dhar Dwivedi R, et al. Simulation and compact modeling of organic thin film transistors (OTFTs) for circuit simulation. Int J Adv App Phy Res, 2019, 6, 1 doi: 10.15379/2408-977X.2019.06.01.01[29] Iñiguez B, Picos R, Veksler D, et al. Universal compact model for long- and short-channel thin-film transistors. Solid-State Electron, 2008, 52, 400 doi: 10.1016/j.sse.2007.10.027[30] Estrada M, Cerdeira A, Puigdollers J, et al. Accurate modeling and parameter extraction method for organic TFTs. Solid-State Electron, 2005, 49, 1009 doi: 10.1016/j.sse.2005.02.004[31] Dwivedi A D D, Jain S K, Dwivedi R D, et al. Numerical simulation and compact modeling of low voltage pentacene based OTFTs. J Sci: Adv Mater Devices, 2019, 4, 561 doi: 10.1016/j.jsamd.2019.10.006[32] UTMOST IV and Smart Spice models manual. Silvaco International, Santa Clara, CA, USA, 2018[33] Dwivedi A D D, Jain S K, Dwivedi R D, et al. Numerical simulation and compact modeling of thin film transistors for future flexible electronics. Hybrid Nanomater: Flexible Electron Mater, 2020[34] Chaudhary V, Kumar N, Singh A K. Solubility dependent trap density in poly (3-hexylthiophene) organic Schottky diodes at room temperature. Synth Met, 2019, 250, 88 doi: 10.1016/j.synthmet.2019.03.006[35] Chaudhary V, Pandey R K, Prakash R, et al. Self-assembled H-aggregation induced high performance poly (3-hexylthiophene) Schottky diode. J Appl Phys, 2017, 122, 225501 doi: 10.1063/1.4997554[36] De Vusser S, Genoe J, Heremans P. Influence of transistor parameters on the noise margin of organic digital circuits. IEEE Trans Electron Devices, 2006, 53, 601 doi: 10.1109/TED.2006.870876[37] Omar S, Mandal S, Ashok A, et al. Organic inverter: Theoretical analysis using load matching technique. Microelectron Reliab, 2011, 51, 2173 doi: 10.1016/j.microrel.2011.05.014[38] Huang T C, Fukuda K, Lo C M, et al. Pseudo-CMOS: A design style for low-cost and robust flexible electronics. IEEE Trans Electron Devices, 2011, 58, 141 doi: 10.1109/TED.2010.2088127[39] Jain S K, Dadhich S, Dwivedi A D D. Numerical simulation based comparative study of P3HT based top contact and bottom contact OTFTs. J Electron Des Technol, 2020, 10, 27 doi: 10.37591/joedt.v10i3.3390 -
Proportional views