Citation: |
Xiaofei Ji, Zuo Xiao, Huiliang Sun, Xugang Guo, Liming Ding. Polymer acceptors for all-polymer solar cells[J]. Journal of Semiconductors, 2021, 42(8): 080202. doi: 10.1088/1674-4926/42/8/080202
****
X F Ji, Z Xiao, H L Sun, X G Guo, L M Ding, Polymer acceptors for all-polymer solar cells[J]. J. Semicond., 2021, 42(8): 080202. doi: 10.1088/1674-4926/42/8/080202.
|
-
References
[1] Guo X, Facchetti A. The journey of conducting polymers from discovery to application. Nat Mater, 2020, 19, 922 doi: 10.1038/s41563-020-0778-5[2] Armin A, Li W, Oskar J S, et al. A history and perspective of non-fullerene electron acceptors for organic solar cells. Adv Energy Mater, 2021, 11, 20003570 doi: 10.1002/aenm.202003570[3] Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0[4] Duan C, Ding L. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 2020, 65, 1231 doi: 10.1016/j.scib.2020.04.030[5] Duan C, Ding L. The new era for organic solar cells: polymer donors. Sci Bull, 2020, 65, 1422 doi: 10.1016/j.scib.2020.04.044[6] Duan C, Ding L. The new era for organic solar cells: polymer acceptors. Sci Bull, 2020, 65, 1508 doi: 10.1016/j.scib.2020.05.023[7] Duan C, Ding L. The new era for organic solar cells: small molecular donors. Sci Bull, 2020, 65, 1597 doi: 10.1016/j.scib.2020.05.019[8] Xiao Z, Yang S, Yang Z, et al. Carbon-oxygen-bridged ladder-type building blocks for highly efficient nonfullerene acceptors. Adv Mater, 2019, 31, 1804790 doi: 10.1002/adma.201804790[9] Tang A, Xiao Z, Ding L, et al. ~1.2 V open-circuit voltage from organic solar cells. J Semicond, 2021, 42, 070202 doi: 10.1088/1674-4926/42/7/070202[10] Guan W, Yuan D, Wu J, et al. Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency. J Semicond, 2021, 42, 030502 doi: 10.1088/1674-4926/42/3/030502[11] Pan W, Han Y, Wang Z, et al. Over 1 cm2 flexible organic solar cells. J Semicond, 2021, 42, 050301 doi: 10.1088/1674-4926/42/5/050301[12] Li X, Xu J, Xiao Z, et al. Dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]oxadiazole-based polymer donors with deep HOMO levels. J Semicond, 2021, 42, 060501 doi: 10.1088/1674-4926/42/6/060501[13] Xiao Z, Liu F, Geng X, et al. A carbon-oxygen-bridged ladder-type building block for efficient donor and acceptor materials used in organic solar cells. Sci Bull, 2017, 62, 1331 doi: 10.1016/j.scib.2017.09.017[14] Xiao Z, Jia X, Ding L. Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull, 2017, 62, 1562 doi: 10.1016/j.scib.2017.11.003[15] Wang T, Qin J, Xiao Z, et al. A 2.16 eV bandgap polymer donor gives 16% power conversion efficiency. Sci Bull, 2020, 65, 179 doi: 10.1016/j.scib.2019.11.030[16] Xiong J, Jin K, Jiang Y, et al. Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Sci Bull, 2019, 64, 1573 doi: 10.1016/j.scib.2019.10.002[17] Wang T, Qin J, Xiao Z, et al. Multiple conformation locks gift polymer donor high efficiency. Nano Energy, 2020, 77, 105161 doi: 10.1016/j.nanoen.2020.105161[18] Qin J, Zhang L, Xiao Z, et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 2020, 65, 1979 doi: 10.1016/j.scib.2020.08.027[19] Liu L, Liu Q, Xiao Z, et al. Induced J-aggregation in acceptor alloy enhances photocurrent. Sci Bull, 2019, 64, 1083 doi: 10.1016/j.scib.2019.06.005[20] Liu J, Liu L, Zuo C, et al. 5H-dithieno[3,2-b:2',3'-d]pyran-5-one unit yields efficient wide-bandgap polymer donors. Sci Bull, 2019, 64, 1655 doi: 10.1016/j.scib.2019.09.001[21] Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502[22] Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001[23] Cui Y, Yao H, Zhang J, et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater, 2020, 32, 1908205 doi: 10.1002/adma.201908205[24] Zhan L, Li S, Xia X, et al. Layer-by-layer processed ternary organic photovoltaics with efficiency over 18%. Adv Mater, 2021, 33, 2007231 doi: 10.1002/adma.202007231[25] Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502[26] Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501[27] Yu G, Heeger A J. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J Appl Phys, 1995, 78, 4510 doi: 10.1063/1.359792[28] Zhan X, Tan Z, Domercq B, et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J Am Chem Soc, 2007, 129, 7246 doi: 10.1021/ja071760d[29] Yan H, Chen Z, Zheng Y, et al. A high-mobility electron-transporting polymer for printed transistors. Nature, 2009, 457, 679 doi: 10.1038/nature07727[30] Guo X, Watson M D. Conjugated polymers from naphthalene bisimide. Org Lett, 2008, 10, 5333 doi: 10.1021/ol801918y[31] Zhu P, Fan B, Ying L, et al. Recent progress in all-polymer solar cells based on wide-bandgap p-type polymers. Chem Asian J, 2019, 14, 3109 doi: 10.1002/asia.201900827[32] Zhu L, Zhong W, Qiu C, et al. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication. Adv Mater, 2019, 31, 1902899 doi: 10.1002/adma.201902899[33] Sun H, Wang L, Wang Y, et al. Imide-functionalized polymer semiconductors. Chem Eur J, 2019, 25, 87 doi: 10.1002/chem.201803605[34] Sun H, Tang Y, Koh C W, et al. High-performance all-polymer solar cells enabled by an n-type polymer based on a fluorinated imide-functionalized arene. Adv Mater, 2019, 31, 1807220 doi: 10.1002/adma.201807220[35] Yang J, Xiao B, Tang A, et al. Aromatic-diimide-based n-type conjugated polymers for all-polymer solar cell applications. Adv Mater, 2019, 31, 1804699 doi: 10.1002/adma.201804699[36] Sun H, Liu B, Yu J, et al. Reducing energy loss via tuning energy levels of polymer acceptors for efficient all-polymer solar cells. Sci China Chem, 2020, 63, 1785 doi: 10.1007/s11426-020-9826-4[37] Zhao R, Wang N, Yu Y, et al. Organoboron polymer for 10% efficiency all-polymer solar cells. Chem Mater, 2020, 32, 1308 doi: 10.1021/acs.chemmater.9b04997[38] Feng K, Wu Z, Su M, et al. Highly efficient ternary all-polymer solar cells with enhanced stability. Adv Funct Mater, 2020, 31, 2008494 doi: 10.1002/adfm.202008494[39] Shi S, Chen P, Chen Y, et al. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells. Adv Mater, 2019, 31, 1905161 doi: 10.1002/adma.201905161[40] Zhang Z, Yang Y, Yao J, et al. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew Chem Int Ed, 2017, 56, 13503 doi: 10.1002/anie.201707678[41] Zhang Z, Li Y. Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew Chem Int Ed, 2021, 60, 4422 doi: 10.1002/anie.202009666[42] Liu W, Xu X, Yuan J, et al. Low-bandgap non-fullerene acceptors enabling high-performance organic solar cells. ACS Energy Lett, 2021, 6, 598 doi: 10.1021/acsenergylett.0c02384[43] Luo Z, Liu T, Ma R, et al. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15. Adv Mater, 2020, 32, 2005942 doi: 10.1002/adma.202005942[44] Fu H, Li Y, Yu J, et al. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. J Am Chem Soc, 2021, 143, 2665 doi: 10.1021/jacs.0c12527[45] Sun H, Yu H, Shi Y, et al. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells. Adv Mater, 2020, 32, 2004183 doi: 10.1002/adma.202004183[46] Liu T, Yang T, Ma R, et al. 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914 doi: 10.1016/j.joule.2021.02.002[47] Sun R, Wang W, Yu H, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5, 1548 doi: 10.1016/j.joule.2021.04.007 -
Proportional views