Citation: |
Lili Ke, Liming Ding. Perovskite crystallization[J]. Journal of Semiconductors, 2021, 42(8): 080203. doi: 10.1088/1674-4926/42/8/080203
****
L L Ke, L M Ding, Perovskite crystallization[J]. J. Semicond., 2021, 42(8): 080203. doi: 10.1088/1674-4926/42/8/080203.
|
-
References
[1] Dunlap-Shohl W A, Zhou Y, Padture N P, et al. Synthetic approaches for halide perovskite thin films. Chem Rev, 2019, 119, 3193 doi: 10.1021/acs.chemrev.8b00318[2] Liu C, Cheng Y B, Ge Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem Soc Rev, 2020, 49, 1653 doi: 10.1039/C9CS00711C[3] Ke L, Luo S, Ren X, et al. Factors influencing the nucleation and crystal growth of solution processed organic lead halide perovskites: a review. J Phys D, 2021, 54, 163001 doi: 10.1088/1361-6463/abd728[4] Xiao M, Huang F, Huang W, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem Int Ed, 2014, 126, 10056 doi: 10.1002/ange.201405334[5] Eperon G E, Leijtens T, Bush K A, et al. Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science, 2016, 354, 861 doi: 10.1126/science.aaf9717[6] Li X, Bi D, Yi C, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353, 58 doi: 10.1126/science.aaf8060[7] Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13, 897 doi: 10.1038/nmat4014[8] Deng Y, Van Brackle C H, Dai X, et al. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci Adv, 2019, 5, eaax7537 doi: 10.1126/sciadv.aax7537[9] Kim M, Kim G H, Oh K S, et al. High-temperature-short-time annealing process for high-performance large-area perovskite solar cells. ACS Nano, 2017, 11, 6057 doi: 10.1021/acsnano.7b02015[10] Li Y, Ding B, Chu Q Q, et al. Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Sci Rep, 2017, 7, 46141 doi: 10.1038/srep46141[11] Yang Y, Lu H, Feng S, et al. Modulating perovskite crystallization process towards highly efficient and stable perovskite solar cells via MXene quantum dots modified SnO2. Energy Environ Sci, 2021, 14, 3447 doi: 10.1039/D1EE00056J[12] Zuo L, Gu Z, Ye T, et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J Am Chem Soc, 2015, 137, 2674 doi: 10.1021/ja512518r[13] Bi C, Wang Q, Shao Y, et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat Commun, 2015, 6, 7747 doi: 10.1038/ncomms8747[14] Kelso M V, Mahenderkar N K, Chen Q, et al. Spin coating epitaxial films. Science, 2019, 364, 166 doi: 10.1126/science.aaw6184[15] Chen A Z, Shiu M, Ma J H, et al. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nat Commun, 2018, 9, 1336 doi: 10.1038/s41467-018-03757-0[16] Wang J, Luo S, Lin Y, et al. Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nat Commun, 2020, 11, 582 doi: 10.1038/s41467-019-13856-1[17] Zhao Y, Tan H, Yuan H, et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun, 2018, 9, 1607 doi: 10.1038/s41467-018-04029-7[18] Lee J W, Kim H S, Park N G. Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc Chem Res, 2016, 49, 311 doi: 10.1021/acs.accounts.5b00440[19] Ahn N, Son D Y, Jang I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J Am Chem Soc, 2015, 137, 8696 doi: 10.1021/jacs.5b04930[20] Lee J W, Bae S H, Hsieh Y T, et al. A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells. Chem, 2017, 3, 290 doi: 10.1016/j.chempr.2017.05.020[21] Cui S, Wang J, Xie H, et al. Rubidium ions enhanced crystallinity for ruddlesden-popper perovskites. Adv Sci, 2020, 7, 2002445 doi: 10.1002/advs.202002445[22] Liu Y, Zheng X, Fang Y, et al. Ligand assisted growth of perovskite single crystals with low defect density. Nat Commun, 2021, 12, 1 doi: 10.1038/s41467-020-20314-w[23] Xiao Z, Dong Q, Bi C, et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater, 2014, 26, 6503 doi: 10.1002/adma.201401685[24] Zhou Z, Wang Z, Zhou Y, et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew Chem Int Ed, 2015, 127, 9841 doi: 10.1002/ange.201504379 -
Proportional views