Citation: |
Liang Chu, Lixiu Zhang, Liming Ding. Superfluorescence from halide perovskite nanocrystal superlattices[J]. Journal of Semiconductors, 2022, 43(10): 100202. doi: 10.1088/1674-4926/43/10/100202
****
Liang Chu, Lixiu Zhang, Liming Ding. 2022: Superfluorescence from halide perovskite nanocrystal superlattices. Journal of Semiconductors, 43(10): 100202. doi: 10.1088/1674-4926/43/10/100202
|
Superfluorescence from halide perovskite nanocrystal superlattices
doi: 10.1088/1674-4926/43/10/100202
More Information-
References
[1] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc, 1993, 115, 8706 doi: 10.1021/ja00072a025[2] Murray C B, Kagan C R, Bawendi M G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science, 1995, 270, 1335 doi: 10.1126/science.270.5240.1335[3] Toso S, Baranov D, Giannini C, et al. Wide-angle X-ray diffraction evidence of structural coherence in CsPbBr3 nanocrystal superlattices. ACS Mater Lett, 2019, 1, 272 doi: 10.1021/acsmaterialslett.9b00217[4] Deng K, Luo Z, Tan L, et al. Self-assembly of anisotropic nanoparticles into functional superstructure. Chem Soc Rev, 2020, 49, 6002 doi: 10.1039/D0CS00541J[5] Tong Y, Yao E P, Manzi A, et al. Spontaneous self-assembly of perovskite nanocrystals into electronically coupled supercrystals: toward filling the green gap. Adv Mater, 2018, 30, 1801117 doi: 10.1002/adma.201801117[6] Vila-Liarte D, Feil M W, Manzi A, et al. Templated-assembly of CsPbBr3 perovskite nanocrystals into 2D photonic supercrystals with amplified spontaneous emission. Angew Chem Int Ed, 2020, 59, 17305 doi: 10.1002/anie.202011445[7] Penzo E, Loiudice A, Barnard E S, et al. Long-range exciton diffusion in two-dimensional assemblies of cesium lead bromide perovskite nanocrystals. ACS Nano, 2020, 14, 6999 doi: 10.1021/acsnano.0c01536[8] Rainò G, Becker M, Bodnarchuk M, et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature, 2018, 563, 671 doi: 10.1038/s41586-018-0683-0[9] Zhou C, Zhong Y, Dong H, et al. Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities. Nat Comm, 2020, 11, 329 doi: 10.1038/s41467-019-14078-1[10] Cherniukh I, Rainò G, Stöferle T, et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature, 2021, 593, 535 doi: 10.1038/s41586-021-03492-5[11] Biliroglu M, Findik G, Mendes J, et al. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat Photo, 2022, 16, 324 doi: 10.1038/s41566-022-00974-4[12] Zhang L X, Pan X Y, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203[13] Ke L L, Ding L M. Perovskite crystallization. J Semicond, 2021, 42, 080203 doi: 10.1088/1674-4926/42/8/080203[14] Zhou F, Li Z, Chen H, et al. Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells. Nano Energy, 2020, 73, 104757 doi: 10.1016/j.nanoen.2020.104757[15] Wang J, Wang S F, Ding L M. The physical origin of stimulated emission in perovskites. J Semicond, 2022, 43, 050202 doi: 10.1088/1674-4926/43/5/050202[16] Mei X Y, Zhang L X, Zhang X L, et al. Perovskite nanocrystals for light-emitting diodes. J Semicond, 2022, 43, 090201 doi: 10.1088/1674-4926/43/9/090201 -
Proportional views