ARTICLES

Polarization sensitive photodetector based on quasi-1D ZrSe3

Xingang Wang1, 4, Tao Xiong2, Kaiyao Xin2, 3, Juehan Yang2, Yueyang Liu2, Zeping Zhao1, , Jianguo Liu1, and Zhongming Wei2, 3,

+ Author Affiliations

 Corresponding author: Zeping Zhao, zzp@semi.ac.cn; Jianguo Liu, Jgliu@semi.ac.cn; Zhongming Wei, zmwei@semi.ac.cn

PDF

Turn off MathJax

Abstract: The in-plane anisotropy of transition metal trichalcogenides (MX3) has a significant impact on the molding of materials and MX3 is a perfect choice for polarized photodetectors. In this study, the crystal structure, optical and optoelectronic anisotropy of one kind of quasi-one-dimensional (1D) semiconductors, ZrSe3, are systematically investigated through experiments and theoretical studies. The ZrSe3-based photodetector shows impressive wide spectral response from ultraviolet (UV) to near infrared (NIR) and exhibits great optoelectrical properties with photoresponsivity of 11.9 mA·W-1 and detectivity of ~106 at 532 nm. Moreover, the dichroic ratio of ZrSe3-based polarized photodetector is around 1.1 at 808 nm. This study suggests that ZrSe3 has potential in optoelectronic applications and polarization detectors.

Key words: quasi-1DZrSe3polarization-sensitive



[1]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6, 147 doi: 10.1038/nnano.2010.279
[2]
Patra A, Rout C S. Anisotropic quasi-one-dimensional layered transition-metal trichalcogenides: Synthesis, properties and applications. RSC Adv, 2020, 10, 36413 doi: 10.1039/D0RA07160A
[3]
Cui Q N, Lipatov A, Wilt J S, et al. Time-resolved measurements of photocarrier dynamics in TiS3 nanoribbons. ACS Appl Mater Interfaces, 2016, 8, 18334 doi: 10.1021/acsami.6b04092
[4]
Ferrer I J, Ares J R, Clamagirand J M, et al. Optical properties of titanium trisulphide (TiS3) thin films. Thin Solid Films, 2013, 535, 398 doi: 10.1016/j.tsf.2012.10.033
[5]
Ferrer I J, Maciá M D, Carcelén V, et al. On the photoelectrochemical properties of TiS3 films. Energy Procedia, 2012, 22, 48 doi: 10.1016/j.egypro.2012.05.219
[6]
Gilbert S J, Lipatov A, Yost A J, et al. The electronic properties of Au and Pt metal contacts on quasi-one-dimensional layered TiS3(001). Appl Phys Lett, 2019, 114, 101604 doi: 10.1063/1.5090270
[7]
Island J O, Buscema M, Barawi M, et al. Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors. Adv Opt Mater, 2014, 2, 641 doi: 10.1002/adom.201400043
[8]
Papadopoulos N, Frisenda R, Biele R, et al. Large birefringence and linear dichroism in TiS3 nanosheets. Nanoscale, 2018, 10, 12424 doi: 10.1039/C8NR03616K
[9]
Pant A, Torun E, Chen B, et al. Strong dichroic emission in the pseudo one dimensional material ZrS3. Nanoscale, 2016, 8, 16259 doi: 10.1039/C6NR05238J
[10]
Xiao Y, Zhou M Y, Liu J L, et al. Phase engineering of two-dimensional transition metal dichalcogenides. Sci China Mater, 2019, 62, 759 doi: 10.1007/s40843-018-9398-1
[11]
Huang H, Gao M, Wang J H, et al. Intercalator-assisted plasma-liquid technology: An efficient exfoliation method for few-layer two-dimensional materials. Sci China Mater, 2020, 63, 2079 doi: 10.1007/s40843-020-1416-0
[12]
Huang Y L, Chen W, Wee A T S. Two-dimensional magnetic transition metal chalcogenides. SmartMat, 2021, 2, 139 doi: 10.1002/smm2.1031
[13]
Zhang Z C, Zhao B, Shen D Y, et al. Synthesis of ultrathin 2D nonlayered α-MnSe nanosheets, MnSe/WS2 heterojunction for high-performance photodetectors. Small Struct, 2021, 2, 2100028 doi: 10.1002/sstr.202100028
[14]
Han X, Xu Z S, Wu W Q, et al. Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct, 2020, 1, 2000029 doi: 10.1002/sstr.202000029
[15]
Tian X Y, Liu Y S. Van der Waals heterojunction ReSe2/WSe2 polarization-resolved photodetector. J Semicond, 2021, 42, 032001 doi: 10.1088/1674-4926/42/3/032001
[16]
Fang H H, Hu W D. Hybrid heterojunctions based on 2D materials and 3D thin-films for high-performance photodetectors. Sci China Phys Mech Astron, 2017, 60, 027031 doi: 10.1007/s11433-016-0402-y
[17]
Iyikanat F, Senger R T, Peeters F M, et al. Quantum-transport characteristics of a p-n junction on single-layer TiS3. Chemphyschem, 2016, 17, 3985 doi: 10.1002/cphc.201600751
[18]
Sun R, Gu Y, Yang G F, et al. Theoretical study on the interfacial properties of monolayer TiS3-metal contacts for electronic device applications. J Phys Chem C, 2019, 123, 7390 doi: 10.1021/acs.jpcc.8b08946
[19]
Kang J, Wang L W. Robust band gap of TiS3 nanofilms. Phys Chem Chem Phys, 2016, 18, 14805 doi: 10.1039/C6CP01125J
[20]
Liu S J, Xiao W B, Zhong M Z, et al. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3). Nanotechnology, 2018, 29, 184002 doi: 10.1088/1361-6528/aaafa2
[21]
Wang X T, Wu K D, Blei M, et al. Highly polarized photoelectrical response in vdW ZrS3 nanoribbons. Adv Electron Mater, 2019, 5, 1900419 doi: 10.1002/aelm.201900419
[22]
Li L, Xiong D Y, Wen J, et al. A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector. Infrared Phys Technol, 2016, 79, 45 doi: 10.1016/j.infrared.2016.09.010
[23]
Gao J, Zheng Y, Yu W, et al. Intrinsic polarization coupling in 2D α-In2Se3 toward artificial synapse with multimode operations. SmartMat, 2021, 2, 88 doi: 10.1002/smm2.1020
[24]
Zhou Z Q, Cui Y, Tan P H, et al. Optical and electrical properties of two-dimensional anisotropic materials. J Semicond, 2019, 40, 061001 doi: 10.1088/1674-4926/40/6/061001
[25]
Fang J Z, Zhou Z Q, Xiao M Q, et al. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. InfoMat, 2020, 2, 291 doi: 10.1002/inf2.12067
[26]
Long M S, Gao A Y, Wang P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci Adv, 2017, 3, e1700589 doi: 10.1126/sciadv.1700589
[27]
Zhou Z Q, Long M S, Pan L F, et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano, 2018, 12, 12416 doi: 10.1021/acsnano.8b06629
[28]
Wang X T, Li Y T, Huang L, et al. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J Am Chem Soc, 2017, 139, 14976 doi: 10.1021/jacs.7b06314
[29]
Osada K, Bae S, Tanaka M, et al. Phonon properties of few-layer crystals of quasi-one-dimensional ZrS3 and ZrSe3. J Phys Chem C, 2016, 120, 4653 doi: 10.1021/acs.jpcc.5b12441
[30]
Yu X, Wen X K, Zhang W F, et al. Fast and controlled growth of two-dimensional layered ZrTe3 nanoribbons by chemical vapor deposition. CrystEngComm, 2019, 21, 5586 doi: 10.1039/C9CE00793H
[31]
Li J, Peng J, Zhang S, et al. Anisotropic multichain nature and filamentary superconductivity in the charge density wave system HfTe3. Phys Rev B, 2017, 96, 174510 doi: 10.1103/PhysRevB.96.174510
[32]
Wu J X, Mao N N, Xie L M, et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew Chem Int Ed, 2015, 54, 2366 doi: 10.1002/anie.201410108
[33]
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118, 8207 doi: 10.1063/1.1564060
[34]
Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B, 1996, 54, 16533 doi: 10.1103/PhysRevB.54.16533
[35]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865 doi: 10.1103/PhysRevLett.77.3865
[36]
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13, 5188 doi: 10.1103/PhysRevB.13.5188
[37]
Saha S, Sinha T P, Mookerjee A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys Rev B, 2000, 62, 8828 doi: 10.1103/PhysRevB.62.8828
[38]
Zhao K, Yang J H, Zhong M Z, et al. Direct polarimetric image sensor and wide spectral response based on quasi-1D Sb2S3 nanowire. Adv Funct Mater, 2021, 31, 2006601 doi: 10.1002/adfm.202006601
[39]
Hou S J, Guo Z F, Yang J H, et al. Birefringence and dichroism in quasi-1D transition metal trichalcogenides: Direct experimental investigation. Small, 2021, 17, e2100457 doi: 10.1002/smll.202100457
[40]
Yang H, Pan L F, Wang X T, et al. Mixed-valence-driven quasi-1D SnIISnIVS3 with highly polarization-sensitive UV-vis-NIR photoresponse. Adv Funct Mater, 2019, 29, 1904416 doi: 10.1002/adfm.201904416
[41]
Xiao M Q, Yang H, Shen W F, et al. Polarization-sensitive photodetectors: Symmetry-reduction enhanced polarization-sensitive photodetection in core-shell SbI3/Sb2O3 van der Waals heterostructure. Small, 2020, 16, 2070036 doi: 10.1002/smll.202070036
Fig. 1.  (Color online) Characterization of ZrSe3 crystal. (a) Low-magnification transmission electron microscopy (TEM) of the quasi-1D ZrSe3. (b) High-resolution transmission electron microscopy (HRTEM) image of the quasi-1D ZrSe3. (c) Selected area electron diffraction (SAED) pattern of the quasi-1D ZrSe. (d) The AFM image of ZrSe3 crystal. (e) High-resolution spectra of Zr 3d core level. (f) High-resolution spectra of Se 3d core level.

Fig. 2.  (Color online) (a) Raman spectra under unpolarized and polarized laser (532 nm). (b) Counter maps of angle-resolved Raman spectra under cross configuration. (c) Counter maps of angle-resolved Raman spectra under parallel configuration. (d) Polar plots of angle-resolved and fitted peak intensities of 234.6 cm−1. (e) Polar plots of angle-resolved and fitted peak intensities of 301.4 cm−1.

Fig. 3.  (Color online) (a) Atomic structure of ZrSe3 crystal. (b) Band structure of layered ZrSe3. (c) Calculated real parts and imaginary parts of the dielectric constant along a-axis and b-axis. (d) The Ra and Rb of optical transition |v> → |c> along the k-points path. (e, f) Partial charge density of ZrSe3 at the state of CBM and VBM respectively.

Fig. 4.  (Color online) (a) Time-resolved photoresponse of the ZrSe3-based photodetector for a bias voltage of 5 V under 532 nm with different light power density. (b) Dependence of the photocurrent on the intensity of incident laser power. (c) The spectral responsivity and detectivity of ZrSe3-based photodetector. (d) Evolution of the photocurrent with a polarized angle under 532 nm.

Fig. 5.  (Color online) (a−c) Time-resolved photoresponse of the ZrSe3-based photodetector for a bias voltage of 5 V under 450, 638 and 808 nm with different light power density respectively. (d–f) Evolution of the photocurrent with polarized angles under 450, 638 and 808 nm, respectively.

Table 1.   Summary of the performance of a device based on quasi-1D ZrSe3.

Wavelength
(nm)
Optical power
density (mW/cm2)
Responsivity
(mA/W)
Imax/Imin
3601504.8
4501506.21.02
53215011.91.03
63815011.31.02
8081501.61.1
DownLoad: CSV
[1]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6, 147 doi: 10.1038/nnano.2010.279
[2]
Patra A, Rout C S. Anisotropic quasi-one-dimensional layered transition-metal trichalcogenides: Synthesis, properties and applications. RSC Adv, 2020, 10, 36413 doi: 10.1039/D0RA07160A
[3]
Cui Q N, Lipatov A, Wilt J S, et al. Time-resolved measurements of photocarrier dynamics in TiS3 nanoribbons. ACS Appl Mater Interfaces, 2016, 8, 18334 doi: 10.1021/acsami.6b04092
[4]
Ferrer I J, Ares J R, Clamagirand J M, et al. Optical properties of titanium trisulphide (TiS3) thin films. Thin Solid Films, 2013, 535, 398 doi: 10.1016/j.tsf.2012.10.033
[5]
Ferrer I J, Maciá M D, Carcelén V, et al. On the photoelectrochemical properties of TiS3 films. Energy Procedia, 2012, 22, 48 doi: 10.1016/j.egypro.2012.05.219
[6]
Gilbert S J, Lipatov A, Yost A J, et al. The electronic properties of Au and Pt metal contacts on quasi-one-dimensional layered TiS3(001). Appl Phys Lett, 2019, 114, 101604 doi: 10.1063/1.5090270
[7]
Island J O, Buscema M, Barawi M, et al. Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors. Adv Opt Mater, 2014, 2, 641 doi: 10.1002/adom.201400043
[8]
Papadopoulos N, Frisenda R, Biele R, et al. Large birefringence and linear dichroism in TiS3 nanosheets. Nanoscale, 2018, 10, 12424 doi: 10.1039/C8NR03616K
[9]
Pant A, Torun E, Chen B, et al. Strong dichroic emission in the pseudo one dimensional material ZrS3. Nanoscale, 2016, 8, 16259 doi: 10.1039/C6NR05238J
[10]
Xiao Y, Zhou M Y, Liu J L, et al. Phase engineering of two-dimensional transition metal dichalcogenides. Sci China Mater, 2019, 62, 759 doi: 10.1007/s40843-018-9398-1
[11]
Huang H, Gao M, Wang J H, et al. Intercalator-assisted plasma-liquid technology: An efficient exfoliation method for few-layer two-dimensional materials. Sci China Mater, 2020, 63, 2079 doi: 10.1007/s40843-020-1416-0
[12]
Huang Y L, Chen W, Wee A T S. Two-dimensional magnetic transition metal chalcogenides. SmartMat, 2021, 2, 139 doi: 10.1002/smm2.1031
[13]
Zhang Z C, Zhao B, Shen D Y, et al. Synthesis of ultrathin 2D nonlayered α-MnSe nanosheets, MnSe/WS2 heterojunction for high-performance photodetectors. Small Struct, 2021, 2, 2100028 doi: 10.1002/sstr.202100028
[14]
Han X, Xu Z S, Wu W Q, et al. Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct, 2020, 1, 2000029 doi: 10.1002/sstr.202000029
[15]
Tian X Y, Liu Y S. Van der Waals heterojunction ReSe2/WSe2 polarization-resolved photodetector. J Semicond, 2021, 42, 032001 doi: 10.1088/1674-4926/42/3/032001
[16]
Fang H H, Hu W D. Hybrid heterojunctions based on 2D materials and 3D thin-films for high-performance photodetectors. Sci China Phys Mech Astron, 2017, 60, 027031 doi: 10.1007/s11433-016-0402-y
[17]
Iyikanat F, Senger R T, Peeters F M, et al. Quantum-transport characteristics of a p-n junction on single-layer TiS3. Chemphyschem, 2016, 17, 3985 doi: 10.1002/cphc.201600751
[18]
Sun R, Gu Y, Yang G F, et al. Theoretical study on the interfacial properties of monolayer TiS3-metal contacts for electronic device applications. J Phys Chem C, 2019, 123, 7390 doi: 10.1021/acs.jpcc.8b08946
[19]
Kang J, Wang L W. Robust band gap of TiS3 nanofilms. Phys Chem Chem Phys, 2016, 18, 14805 doi: 10.1039/C6CP01125J
[20]
Liu S J, Xiao W B, Zhong M Z, et al. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3). Nanotechnology, 2018, 29, 184002 doi: 10.1088/1361-6528/aaafa2
[21]
Wang X T, Wu K D, Blei M, et al. Highly polarized photoelectrical response in vdW ZrS3 nanoribbons. Adv Electron Mater, 2019, 5, 1900419 doi: 10.1002/aelm.201900419
[22]
Li L, Xiong D Y, Wen J, et al. A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector. Infrared Phys Technol, 2016, 79, 45 doi: 10.1016/j.infrared.2016.09.010
[23]
Gao J, Zheng Y, Yu W, et al. Intrinsic polarization coupling in 2D α-In2Se3 toward artificial synapse with multimode operations. SmartMat, 2021, 2, 88 doi: 10.1002/smm2.1020
[24]
Zhou Z Q, Cui Y, Tan P H, et al. Optical and electrical properties of two-dimensional anisotropic materials. J Semicond, 2019, 40, 061001 doi: 10.1088/1674-4926/40/6/061001
[25]
Fang J Z, Zhou Z Q, Xiao M Q, et al. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. InfoMat, 2020, 2, 291 doi: 10.1002/inf2.12067
[26]
Long M S, Gao A Y, Wang P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci Adv, 2017, 3, e1700589 doi: 10.1126/sciadv.1700589
[27]
Zhou Z Q, Long M S, Pan L F, et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano, 2018, 12, 12416 doi: 10.1021/acsnano.8b06629
[28]
Wang X T, Li Y T, Huang L, et al. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J Am Chem Soc, 2017, 139, 14976 doi: 10.1021/jacs.7b06314
[29]
Osada K, Bae S, Tanaka M, et al. Phonon properties of few-layer crystals of quasi-one-dimensional ZrS3 and ZrSe3. J Phys Chem C, 2016, 120, 4653 doi: 10.1021/acs.jpcc.5b12441
[30]
Yu X, Wen X K, Zhang W F, et al. Fast and controlled growth of two-dimensional layered ZrTe3 nanoribbons by chemical vapor deposition. CrystEngComm, 2019, 21, 5586 doi: 10.1039/C9CE00793H
[31]
Li J, Peng J, Zhang S, et al. Anisotropic multichain nature and filamentary superconductivity in the charge density wave system HfTe3. Phys Rev B, 2017, 96, 174510 doi: 10.1103/PhysRevB.96.174510
[32]
Wu J X, Mao N N, Xie L M, et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew Chem Int Ed, 2015, 54, 2366 doi: 10.1002/anie.201410108
[33]
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118, 8207 doi: 10.1063/1.1564060
[34]
Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B, 1996, 54, 16533 doi: 10.1103/PhysRevB.54.16533
[35]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865 doi: 10.1103/PhysRevLett.77.3865
[36]
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13, 5188 doi: 10.1103/PhysRevB.13.5188
[37]
Saha S, Sinha T P, Mookerjee A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys Rev B, 2000, 62, 8828 doi: 10.1103/PhysRevB.62.8828
[38]
Zhao K, Yang J H, Zhong M Z, et al. Direct polarimetric image sensor and wide spectral response based on quasi-1D Sb2S3 nanowire. Adv Funct Mater, 2021, 31, 2006601 doi: 10.1002/adfm.202006601
[39]
Hou S J, Guo Z F, Yang J H, et al. Birefringence and dichroism in quasi-1D transition metal trichalcogenides: Direct experimental investigation. Small, 2021, 17, e2100457 doi: 10.1002/smll.202100457
[40]
Yang H, Pan L F, Wang X T, et al. Mixed-valence-driven quasi-1D SnIISnIVS3 with highly polarization-sensitive UV-vis-NIR photoresponse. Adv Funct Mater, 2019, 29, 1904416 doi: 10.1002/adfm.201904416
[41]
Xiao M Q, Yang H, Shen W F, et al. Polarization-sensitive photodetectors: Symmetry-reduction enhanced polarization-sensitive photodetection in core-shell SbI3/Sb2O3 van der Waals heterostructure. Small, 2020, 16, 2070036 doi: 10.1002/smll.202070036

2022102001suppl.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1152 Times PDF downloads: 101 Times Cited by: 0 Times

    History

    Received: 28 April 2022 Revised: 09 May 2022 Online: Accepted Manuscript: 29 June 2022Uncorrected proof: 30 June 2022Published: 01 October 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xingang Wang, Tao Xiong, Kaiyao Xin, Juehan Yang, Yueyang Liu, Zeping Zhao, Jianguo Liu, Zhongming Wei. Polarization sensitive photodetector based on quasi-1D ZrSe3[J]. Journal of Semiconductors, 2022, 43(10): 102001. doi: 10.1088/1674-4926/43/10/102001 ****Xingang Wang, Tao Xiong, Kaiyao Xin, Juehan Yang, Yueyang Liu, Zeping Zhao, Jianguo Liu, Zhongming Wei. 2022: Polarization sensitive photodetector based on quasi-1D ZrSe3. Journal of Semiconductors, 43(10): 102001. doi: 10.1088/1674-4926/43/10/102001
      Citation:
      Xingang Wang, Tao Xiong, Kaiyao Xin, Juehan Yang, Yueyang Liu, Zeping Zhao, Jianguo Liu, Zhongming Wei. Polarization sensitive photodetector based on quasi-1D ZrSe3[J]. Journal of Semiconductors, 2022, 43(10): 102001. doi: 10.1088/1674-4926/43/10/102001 ****
      Xingang Wang, Tao Xiong, Kaiyao Xin, Juehan Yang, Yueyang Liu, Zeping Zhao, Jianguo Liu, Zhongming Wei. 2022: Polarization sensitive photodetector based on quasi-1D ZrSe3. Journal of Semiconductors, 43(10): 102001. doi: 10.1088/1674-4926/43/10/102001

      Polarization sensitive photodetector based on quasi-1D ZrSe3

      doi: 10.1088/1674-4926/43/10/102001
      More Information
      • Xingang Wang:received his B.S. degree in 2018 from Qingdao University. He is currently a Ph.D. candidate in physical electronics from the Institute of Semiconductors, Chinese Academacy of Sciences (CAS), Beijing China, under the supervision of Prof. Jianguo Liu. His research focuses on the electronic, photoelectric properties of 2D layered materials and high sensitivity photodetector devices
      • Zeping Zhao:got her B.S. degree from Hebei University of Technology, Tianjin, China, in 2014, and received a Ph.D. degree in physical electronics from the Institute of Semiconductors, Chinese Academy of Sciences (CAS), Beijing, China, in 2019. Now she is working for the Institute of Semiconductors, CAS. She has published more than 20 articles in scientific journals. Her study interests focus on high-frequency photodetector devices, optical fiber communication systems technology, high-speed microwave package design, and array hybrid integration
      • Jianguo Liu:got his B.S. degree in Inner Mongolia Normal University, Inner Mongolia, China, in 1998, received a master’s degree from the Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Anhui, China, in 2004, and got his Ph.D. degree from Nankai University, Tianjin, China, 2007. He worked at Northwestern University as a postdoctoral fellow, America, from 2010 to 2011. Now he is a research fellow of the Institute of Semiconductors, CAS. And he is also a professor of CAS. He has published more than 100 articles in scientific journals and got 67 patents for invention. His research focuses on applied optics. Dr. Liu received the funding of the National Science Fund for Outstanding Youth in 2017
      • Zhongming Wei:received his B.S. from Wuhan University (China) in 2005, and Ph.D. from the Institute of Chemistry, Chinese Academy of Sciences in 2010 under the supervision of Prof. Daoben Zhu and Prof. Wei Xu. From August 2010 to January 2015, he worked as a postdoctoral fellow and then Assistant Professor in Prof. Thomas Bjørnholm's group at University of Copenhagen, Denmark. Currently, he is working as a Professor at the Institute of Semiconductors, Chinese Academy of Sciences. His research interests include low-dimensional semiconductors and their optoelectronic devices
      • Corresponding author: zzp@semi.ac.cnJgliu@semi.ac.cnzmwei@semi.ac.cn
      • Received Date: 2022-04-28
      • Revised Date: 2022-05-09
      • Available Online: 2022-06-29

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return