Citation: |
Xingang Wang, Tao Xiong, Kaiyao Xin, Juehan Yang, Yueyang Liu, Zeping Zhao, Jianguo Liu, Zhongming Wei. Polarization sensitive photodetector based on quasi-1D ZrSe3[J]. Journal of Semiconductors, 2022, 43(10): 102001. doi: 10.1088/1674-4926/43/10/102001
****
Xingang Wang, Tao Xiong, Kaiyao Xin, Juehan Yang, Yueyang Liu, Zeping Zhao, Jianguo Liu, Zhongming Wei. 2022: Polarization sensitive photodetector based on quasi-1D ZrSe3. Journal of Semiconductors, 43(10): 102001. doi: 10.1088/1674-4926/43/10/102001
|
Polarization sensitive photodetector based on quasi-1D ZrSe3
doi: 10.1088/1674-4926/43/10/102001
More Information-
Abstract
The in-plane anisotropy of transition metal trichalcogenides (MX3) has a significant impact on the molding of materials and MX3 is a perfect choice for polarized photodetectors. In this study, the crystal structure, optical and optoelectronic anisotropy of one kind of quasi-one-dimensional (1D) semiconductors, ZrSe3, are systematically investigated through experiments and theoretical studies. The ZrSe3-based photodetector shows impressive wide spectral response from ultraviolet (UV) to near infrared (NIR) and exhibits great optoelectrical properties with photoresponsivity of 11.9 mA·W-1 and detectivity of ~106 at 532 nm. Moreover, the dichroic ratio of ZrSe3-based polarized photodetector is around 1.1 at 808 nm. This study suggests that ZrSe3 has potential in optoelectronic applications and polarization detectors.-
Keywords:
- quasi-1D,
- ZrSe3,
- polarization-sensitive
-
References
[1] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6, 147 doi: 10.1038/nnano.2010.279[2] Patra A, Rout C S. Anisotropic quasi-one-dimensional layered transition-metal trichalcogenides: Synthesis, properties and applications. RSC Adv, 2020, 10, 36413 doi: 10.1039/D0RA07160A[3] Cui Q N, Lipatov A, Wilt J S, et al. Time-resolved measurements of photocarrier dynamics in TiS3 nanoribbons. ACS Appl Mater Interfaces, 2016, 8, 18334 doi: 10.1021/acsami.6b04092[4] Ferrer I J, Ares J R, Clamagirand J M, et al. Optical properties of titanium trisulphide (TiS3) thin films. Thin Solid Films, 2013, 535, 398 doi: 10.1016/j.tsf.2012.10.033[5] Ferrer I J, Maciá M D, Carcelén V, et al. On the photoelectrochemical properties of TiS3 films. Energy Procedia, 2012, 22, 48 doi: 10.1016/j.egypro.2012.05.219[6] Gilbert S J, Lipatov A, Yost A J, et al. The electronic properties of Au and Pt metal contacts on quasi-one-dimensional layered TiS3(001). Appl Phys Lett, 2019, 114, 101604 doi: 10.1063/1.5090270[7] Island J O, Buscema M, Barawi M, et al. Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors. Adv Opt Mater, 2014, 2, 641 doi: 10.1002/adom.201400043[8] Papadopoulos N, Frisenda R, Biele R, et al. Large birefringence and linear dichroism in TiS3 nanosheets. Nanoscale, 2018, 10, 12424 doi: 10.1039/C8NR03616K[9] Pant A, Torun E, Chen B, et al. Strong dichroic emission in the pseudo one dimensional material ZrS3. Nanoscale, 2016, 8, 16259 doi: 10.1039/C6NR05238J[10] Xiao Y, Zhou M Y, Liu J L, et al. Phase engineering of two-dimensional transition metal dichalcogenides. Sci China Mater, 2019, 62, 759 doi: 10.1007/s40843-018-9398-1[11] Huang H, Gao M, Wang J H, et al. Intercalator-assisted plasma-liquid technology: An efficient exfoliation method for few-layer two-dimensional materials. Sci China Mater, 2020, 63, 2079 doi: 10.1007/s40843-020-1416-0[12] Huang Y L, Chen W, Wee A T S. Two-dimensional magnetic transition metal chalcogenides. SmartMat, 2021, 2, 139 doi: 10.1002/smm2.1031[13] Zhang Z C, Zhao B, Shen D Y, et al. Synthesis of ultrathin 2D nonlayered α-MnSe nanosheets, MnSe/WS2 heterojunction for high-performance photodetectors. Small Struct, 2021, 2, 2100028 doi: 10.1002/sstr.202100028[14] Han X, Xu Z S, Wu W Q, et al. Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct, 2020, 1, 2000029 doi: 10.1002/sstr.202000029[15] Tian X Y, Liu Y S. Van der Waals heterojunction ReSe2/WSe2 polarization-resolved photodetector. J Semicond, 2021, 42, 032001 doi: 10.1088/1674-4926/42/3/032001[16] Fang H H, Hu W D. Hybrid heterojunctions based on 2D materials and 3D thin-films for high-performance photodetectors. Sci China Phys Mech Astron, 2017, 60, 027031 doi: 10.1007/s11433-016-0402-y[17] Iyikanat F, Senger R T, Peeters F M, et al. Quantum-transport characteristics of a p-n junction on single-layer TiS3. Chemphyschem, 2016, 17, 3985 doi: 10.1002/cphc.201600751[18] Sun R, Gu Y, Yang G F, et al. Theoretical study on the interfacial properties of monolayer TiS3-metal contacts for electronic device applications. J Phys Chem C, 2019, 123, 7390 doi: 10.1021/acs.jpcc.8b08946[19] Kang J, Wang L W. Robust band gap of TiS3 nanofilms. Phys Chem Chem Phys, 2016, 18, 14805 doi: 10.1039/C6CP01125J[20] Liu S J, Xiao W B, Zhong M Z, et al. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3). Nanotechnology, 2018, 29, 184002 doi: 10.1088/1361-6528/aaafa2[21] Wang X T, Wu K D, Blei M, et al. Highly polarized photoelectrical response in vdW ZrS3 nanoribbons. Adv Electron Mater, 2019, 5, 1900419 doi: 10.1002/aelm.201900419[22] Li L, Xiong D Y, Wen J, et al. A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector. Infrared Phys Technol, 2016, 79, 45 doi: 10.1016/j.infrared.2016.09.010[23] Gao J, Zheng Y, Yu W, et al. Intrinsic polarization coupling in 2D α-In2Se3 toward artificial synapse with multimode operations. SmartMat, 2021, 2, 88 doi: 10.1002/smm2.1020[24] Zhou Z Q, Cui Y, Tan P H, et al. Optical and electrical properties of two-dimensional anisotropic materials. J Semicond, 2019, 40, 061001 doi: 10.1088/1674-4926/40/6/061001[25] Fang J Z, Zhou Z Q, Xiao M Q, et al. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. InfoMat, 2020, 2, 291 doi: 10.1002/inf2.12067[26] Long M S, Gao A Y, Wang P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci Adv, 2017, 3, e1700589 doi: 10.1126/sciadv.1700589[27] Zhou Z Q, Long M S, Pan L F, et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano, 2018, 12, 12416 doi: 10.1021/acsnano.8b06629[28] Wang X T, Li Y T, Huang L, et al. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J Am Chem Soc, 2017, 139, 14976 doi: 10.1021/jacs.7b06314[29] Osada K, Bae S, Tanaka M, et al. Phonon properties of few-layer crystals of quasi-one-dimensional ZrS3 and ZrSe3. J Phys Chem C, 2016, 120, 4653 doi: 10.1021/acs.jpcc.5b12441[30] Yu X, Wen X K, Zhang W F, et al. Fast and controlled growth of two-dimensional layered ZrTe3 nanoribbons by chemical vapor deposition. CrystEngComm, 2019, 21, 5586 doi: 10.1039/C9CE00793H[31] Li J, Peng J, Zhang S, et al. Anisotropic multichain nature and filamentary superconductivity in the charge density wave system HfTe3. Phys Rev B, 2017, 96, 174510 doi: 10.1103/PhysRevB.96.174510[32] Wu J X, Mao N N, Xie L M, et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew Chem Int Ed, 2015, 54, 2366 doi: 10.1002/anie.201410108[33] Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118, 8207 doi: 10.1063/1.1564060[34] Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B, 1996, 54, 16533 doi: 10.1103/PhysRevB.54.16533[35] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865 doi: 10.1103/PhysRevLett.77.3865[36] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13, 5188 doi: 10.1103/PhysRevB.13.5188[37] Saha S, Sinha T P, Mookerjee A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys Rev B, 2000, 62, 8828 doi: 10.1103/PhysRevB.62.8828[38] Zhao K, Yang J H, Zhong M Z, et al. Direct polarimetric image sensor and wide spectral response based on quasi-1D Sb2S3 nanowire. Adv Funct Mater, 2021, 31, 2006601 doi: 10.1002/adfm.202006601[39] Hou S J, Guo Z F, Yang J H, et al. Birefringence and dichroism in quasi-1D transition metal trichalcogenides: Direct experimental investigation. Small, 2021, 17, e2100457 doi: 10.1002/smll.202100457[40] Yang H, Pan L F, Wang X T, et al. Mixed-valence-driven quasi-1D SnIISnIVS3 with highly polarization-sensitive UV-vis-NIR photoresponse. Adv Funct Mater, 2019, 29, 1904416 doi: 10.1002/adfm.201904416[41] Xiao M Q, Yang H, Shen W F, et al. Polarization-sensitive photodetectors: Symmetry-reduction enhanced polarization-sensitive photodetection in core-shell SbI3/Sb2O3 van der Waals heterostructure. Small, 2020, 16, 2070036 doi: 10.1002/smll.202070036 -
Supplements
2022102001suppl.pdf -
Proportional views