Citation: |
Yumeng Zhang, Zhejia Wang, Jiaheng Feng, Shuaiqiang Ming, Furong Qu, Yang Xia, Meng He, Zhimin Hu, Jing Wang. Synthesis and electromagnetic transport of large-area 2D WTe2 thin film[J]. Journal of Semiconductors, 2022, 43(10): 102002. doi: 10.1088/1674-4926/43/10/102002
****
Yumeng Zhang, Zhejia Wang, Jiaheng Feng, Shuaiqiang Ming, Furong Qu, Yang Xia, Meng He, Zhimin Hu, Jing Wang. 2022: Synthesis and electromagnetic transport of large-area 2D WTe2 thin film. Journal of Semiconductors, 43(10): 102002. doi: 10.1088/1674-4926/43/10/102002
|
Synthesis and electromagnetic transport of large-area 2D WTe2 thin film
doi: 10.1088/1674-4926/43/10/102002
More Information-
Abstract
Tungsten telluride thin films were successfully prepared on monocrystal sapphire substrates by using atomic layer deposition and chemical vapor deposition technology, and the effects of different tellurization temperatures on the properties of tungsten telluride films were investigated. The growth rate, crystal structure and composition of the film samples were characterized and analyzed by using scanning electron microscope, Raman spectroscopy and X-ray photoelectron spectroscopy. The results showed that tungsten telluride thin films with good crystal orientation in (001) were obtained at telluride temperature of 550 °C. When the telluride temperature reached 570 °C, the tungsten telluride began to decompose and unsaturated magnetoresistance was found. -
References
[1] Qi X L, Zhang S C. Topological insulators and superconductors. Rev Mod Phys, 2011, 83, 1057 doi: 10.1103/RevModPhys.83.1057[2] Ghosh B, Gupta A, Bishnoi B. Effects of defects on the electronic properties of WTe2 armchair nanoribbons. J Semicond, 2014, 35, 113002 doi: 10.1088/1674-4926/35/11/113002[3] Zhou Z Q, Cui Y, Tan P H, et al. Optical and electrical properties of two-dimensional anisotropic materials. J Semicond, 2019, 40, 061001 doi: 10.1088/1674-4926/40/6/061001[4] Zhang P, Zhang Y W, Wei Y, et al. Contact engineering for two-dimensional semiconductors. J Semicond, 2020, 41, 071901 doi: 10.1088/1674-4926/41/7/071901[5] Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314, 1757 doi: 10.1126/science.1133734[6] König M, Wiedmann S, Brüne C, et al. Quantum spin hall insulator state in HgTe quantum wells. Science, 2007, 318, 766 doi: 10.1126/science.1148047[7] Qian X F, Liu J W, Fu L, et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science, 2014, 346, 1344 doi: 10.1126/science.1256815[8] Liu C C, Feng W X, Yao Y G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 2011, 107, 076802 doi: 10.1103/PhysRevLett.107.076802[9] Xu Y, Yan B H, Zhang H J, et al. Large-gap quantum spin hall insulators in tin films. Phys Rev Lett, 2013, 111, 136804 doi: 10.1103/PhysRevLett.111.136804[10] Ali M N, Xiong J, Flynn S, et al. Large, non-saturating magnetoresistance in WTe2. Nature, 2014, 514, 205 doi: 10.1038/nature13763[11] Luo Y K, Li H, Dai Y M, et al. Hall effect in the extremely large magnetoresistance semimetal WTe2. Appl Phys Lett, 2015, 107, 182411 doi: 10.1063/1.4935240[12] Song Y, Zhang Q, Mi W B, et al. Valley polarization and p-/n-type doping of monolayer WTe2 on top of Fe3O4(111). Phys Chem Chem Phys, 2016, 18, 15039 doi: 10.1039/C6CP01986B[13] Zhu Z W, Lin X, Liu J, et al. Quantum oscillations, thermoelectric coefficients, and the Fermi surface of semimetallic WTe2. Phys Rev Lett, 2015, 114, 176601 doi: 10.1103/PhysRevLett.114.176601[14] Jiang J, Tang F, Pan X C, et al. Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2. Phys Rev Lett, 2015, 115, 166601 doi: 10.1103/PhysRevLett.115.166601[15] Fei Z Y, Palomaki T, Wu S F, et al. Edge conduction in monolayer WTe2. Nat Phys, 2017, 13, 677 doi: 10.1038/nphys4091[16] Wu S F, Fatemi V, Gibson Q D, et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science, 2018, 359, 76 doi: 10.1126/science.aan6003[17] Song Y H, Jia Z Y, Zhang D Q, et al. Observation of Coulomb gap in the quantum spin Hall candidate single-layer 1T’-WTe2. Nat Commun, 2018, 9, 4071 doi: 10.1038/s41467-018-06635-x[18] Jia Z Y, Song Y H, Li X B, et al. Direct visualization of a two-dimensional topological insulator in the single-layer 1T'-WTe2. Phys Rev B, 2017, 96, 041108 doi: 10.1103/PhysRevB.96.041108[19] Li J, Cheng S, Liu Z X, et al. Centimeter-scale, large-area, few-layer 1T'-WTe2 films by chemical vapor deposition and its long-term stability in ambient condition. J Phys Chem C, 2018, 122, 7005 doi: 10.1021/acs.jpcc.8b00679[20] Jiang Y C, Gao J, Wang L. Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer. Sci Rep, 2016, 6, 19624 doi: 10.1038/srep19624[21] Zhou J D, Liu F C, Lin J H, et al. 2D materials: Large-area and high-quality 2D transition metal telluride. Adv Mater, 2017, 29, 1603471 doi: 10.1002/adma.201603471[22] Zhou Y, Jang H, Woods J M, et al. Direct synthesis of large-scale WTe2 thin films with low thermal conductivity. Adv Funct Mater, 2017, 27, 1605928 doi: 10.1002/adfm.201605928[23] Aslan T, Mtsuko D, Coleman C, et al. Observation of Shubnikov de Haas and aharanov-bohm oscillations in silicon nanowires. arXiv: 1504.02325, 2015[24] Wang Y, Wang X, Xu Y, et al. Simultaneous synthesis of WO3– x quantum dots and bundle-like nanowires using a one-pot template-free solvothermal strategy and their versatile applications. Small, 2017, 11, 1310 doi: 10.1002/smll.201603689[25] Lu W, Zhang Y D, Zhu Z S, et al. Thin tungsten telluride layer preparation by thermal annealing. Nanotechnology, 2016, 27, 414006 doi: 10.1088/0957-4484/27/41/414006[26] Naylor C H, Parkin W M, Gao Z L, et al. Large-area synthesis of high-quality monolayer 1T'-WTe2 flakes. 2D Mater, 2017, 4, 021008 doi: 10.1088/2053-1583/aa5921[27] Shi S Y, Li J, Hsu C, et al. Observation of the out-of-plane polarized spin current from CVD grown WTe2. Adv Quantum Tech, 2021, 4, 2100038 doi: 10.1002/qute.202100038[28] Chen K, Chen Z, Wan X, et al. A simple method for synthesis of high-quality millimeter-scale 1T' transition-metal telluride and near-field nanooptical properties. Adv Mater, 2017, 29, 1700704 doi: 10.1002/adma.201700704[29] Mleczko M J, Xu R L, Okabe K, et al. High Current density and low thermal conductivity of atomically thin semimetallic WTe2. ACS Nano, 2016, 10, 7507 doi: 10.1021/acsnano.6b02368[30] Giri A, Yang H, Jang W, et al. Synthesis of atomically thin transition metal ditelluride films by rapid chemical transformation in solution phase. Chem Mater, 2018, 30, 2463 doi: 10.1021/acs.chemmater.8b00684[31] Cai P L, Hu J, He L P, et al. Drastic pressure effect on the extremely large magnetoresistance in WTe2: Quantum oscillation study. Phys Rev Lett, 2015, 115, 057202 doi: 10.1103/PhysRevLett.115.057202[32] Lv Y Y, Zhang B B, Li X, et al. Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals. Sci Rep, 2016, 6, 26903 doi: 10.1038/srep26903[33] Pletikosić I, Ali M N, Fedorov A V, et al. Electronic structure basis for the extraordinary magnetoresistance in WTe2. Phys Rev Lett, 2014, 113, 216601 doi: 10.1103/PhysRevLett.113.216601 -
Proportional views