Citation: |
Songxue Bai, Lixiu Zhang, Qianqian Lin, Liming Ding. Organic photodetectors with non-fullerene acceptors[J]. Journal of Semiconductors, 2022, 43(11): 110201. doi: 10.1088/1674-4926/43/11/110201
****
Songxue Bai, Lixiu Zhang, Qianqian Lin, Liming Ding. 2022: Organic photodetectors with non-fullerene acceptors. Journal of Semiconductors, 43(11): 110201. doi: 10.1088/1674-4926/43/11/110201
|
Organic photodetectors with non-fullerene acceptors
doi: 10.1088/1674-4926/43/11/110201
More Information-
References
[1] Xiao Z, Jia X, Ding L. Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull, 2017, 62, 1562 doi: 10.1016/j.scib.2017.11.003[2] Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001[3] Cao J, Nie G, Zhang L, et al. Star polymer donors. J Semicond, 2022, 43, 070201 doi: 10.1088/1674-4926/43/7/070201[4] Cao J, Yi L, Ding L. The origin and evolution of Y6 structure. J Semicond, 2022, 43, 030202 doi: 10.1088/1674-4926/43/3/030202[5] Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501[6] Fu H, Wang Z, Sun Y. Polymer donors for high-performance non-fullerene organic solar cells. Angew Chem Int Edit, 2019, 58, 4442 doi: 10.1002/anie.201806291[7] Zhang J, Tan H S, Guo X, et al. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat Energy, 2018, 3, 720 doi: 10.1038/s41560-018-0181-5[8] Liu J, Wang Y, Wen H, et al. Organic photodetectors: materials, structures, and challenges. Sol RRL, 2020, 4, 2000139 doi: 10.1002/solr.202000139[9] Lan Z, Lau Y S, Wang Y, et al. Filter-free band-selective organic photodetectors. Adv Opt Mater, 2020, 8, 2001388 doi: 10.1002/adom.202001388[10] Armin A, Hambsch M, Kim I K, et al. Thick junction broadband organic photodiodes. Laser Photon Rev, 2014, 8, 924 doi: 10.1002/lpor.201400081[11] Li L, Zhang F, Wang J, et al. Achieving EQE of 16, 700% in P3HT: PC71BM based photodetectors by trap-assisted photomultiplication. Sci Rep, 2015, 5, 9181 doi: 10.1038/srep09181[12] Guo D, Yang L, Zhao J, et al. Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1 000 000%. Mater Horizons, 2021, 8, 2293 doi: 10.1039/D1MH00776A[13] Lee J, Ko S J, Lee H, et al. Side-chain engineering of nonfullerene acceptors for near-infrared organic photodetectors and photovoltaics. ACS Energy Lett, 2019, 4, 1401 doi: 10.1021/acsenergylett.9b00721[14] Li W, Xu Y, Meng X, et al. Visible to near-infrared photodetection based on ternary organic heterojunctions. Adv Funct Mater, 2019, 29, 1808948 doi: 10.1002/adfm.201808948[15] Liao X, Xie W, Han Z, et al. NIR photodetectors with highly efficient detectivity enabled by 2D fluorinated dithienopicenocarbazole-based ultra-narrow bandgap acceptors. Adv Funct Mater, 2022, 2204255 doi: 10.1002/adfm.202204255[16] Zhao Z, Liu M, Yang K, et al. Highly sensitive narrowband photomultiplication-type organic photodetectors prepared by transfer-printed technology. Adv Funct Mater, 2021, 31, 2106009 doi: 10.1002/adfm.202106009[17] Wang W, Zhang F, Du M, et al. Highly narrowband photomultiplication type organic photodetectors. Nano Lett, 2017, 17, 1995 doi: 10.1021/acs.nanolett.6b05418[18] Lin Q, Armin A, Burn P L, et al. Filterless narrowband visible photodetectors. Nat Photonics, 2015, 9, 687 doi: 10.1038/nphoton.2015.175[19] Armin A, Jansen-van Vuuren R D, Kopidakis N, et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat Commun, 2015, 6, 6343 doi: 10.1038/ncomms7343[20] Xie B, Xie R, Zhang K, et al. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat Commun, 2020, 11, 2871 doi: 10.1038/s41467-020-16675-x[21] Yang J, Huang J, Li R, et al. Cavity-enhanced near-infrared organic photodetectors based on a conjugated polymer containing [1,2,5]selenadiazolo[3,4-c]pyridine. Chem Mat, 2021, 33, 5147 doi: 10.1021/acs.chemmater.1c01196[22] Wang W, Zhang F, Bai H, et al. Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response. Nanoscale, 2016, 8, 5578 doi: 10.1039/C6NR00079G[23] Yang K, Zhao Z, Liu M, et al. Employing liquid crystal material as regulator to enhance performance of photomultiplication type polymer photodetectors. Chem Eng J, 2022, 427, 131802 doi: 10.1016/j.cej.2021.131802[24] Liu M, Wang J, Zhao Z, et al. Ultra-narrow-band NIR photomultiplication organic photodetectors based on charge injection narrowing. J Phys Chem Lett, 2021, 12, 2937 doi: 10.1021/acs.jpclett.1c00330[25] Bai S, Li R, Huang H, et al. Transient analysis of photomultiplication-type organic photodiodes. Appl Phys Rev, 2022, 9, 021405 doi: 10.1063/5.0083361[26] Xu Y, Lin Q. Photodetectors based on solution-processable semiconductors: Recent advances and perspectives. Appl Phys Rev, 2020, 7, 011315 doi: 10.1063/1.5144840[27] Huang H, Jiang L, Peng J, et al. High-performance organic phototransistors based on D18, a high-mobility and unipolar polymer. Chem Mat, 2021, 33, 8089 doi: 10.1021/acs.chemmater.1c02839[28] Zhao Z, Xu C, Niu L, et al. Recent progress on broadband organic photodetectors and their applications. Laser Photon Rev, 2020, 14, 2000262 doi: 10.1002/lpor.202000262[29] Ren H, Chen J D, Li Y Q, et al. Recent progress in organic photodetectors and their applications. Adv Sci, 2021, 8, 2002418 doi: 10.1002/advs.202002418[30] Liu M, Wang H, Tang Q, et al. Ultrathin air-stable n-type organic phototransistor array for conformal optoelectronics. Sci Rep, 2018, 8, 16612 doi: 10.1038/s41598-018-35062-7[31] Li F, Chen Y, Ma C, et al. High-performance near-infrared phototransistor based on n-type small-molecular organic semiconductor. Adv Electron Mater, 2017, 3, 1600430 doi: 10.1002/aelm.201600430[32] Xiong S, Li J, Peng J, et al. Water Transfer printing of multilayered near-infrared organic photodetectors. Adv Opt Mater, 2022, 10, 2101837 doi: 10.1002/adom.202101837[33] Zhong Z, Peng F, Huang Z, et al. High-detectivity non-fullerene organic photodetectors enabled by a cross-linkable electron blocking layer. ACS Appl Mater Interfaces, 2020, 12, 45092 doi: 10.1021/acsami.0c13833[34] Bristow H, Jacoutot P, Scaccabarozzi A D, et al. Nonfullerene-based organic photodetectors for ultrahigh sensitivity visible light detection. ACS Appl Mater Interfaces, 2020, 12, 48836 doi: 10.1021/acsami.0c14016[35] Yoon S, Lee G S, Sim K M, et al. End-group functionalization of non-fullerene acceptors for high external quantum efficiency over 150 000% in photomultiplication type organic photodetectors. Adv Funct Mater, 2021, 31, 2006448 doi: 10.1002/adfm.202006448[36] Wang H, Li Y, Yao B, et al. Gold nanoparticles-decorated N,N'-dioctyl-3,4,9,10-perylene tetracarboxylic diimide active layer towards remarkably enhanced visible-light photoresponse of an n-type organic phototransistor. Thin Solid Films, 2021, 718, 138478 doi: 10.1016/j.tsf.2020.138478[37] Yeliu K, Zhong J, Wang X, et al. High performance n-type vertical organic phototransistors. Org Electron, 2019, 67, 200 doi: 10.1016/j.orgel.2019.01.018 -
Proportional views