J. Semicond. > 2022, Volume 43 > Issue 11 > 110201

RESEARCH HIGHLIGHTS

Organic photodetectors with non-fullerene acceptors

Songxue Bai1, Lixiu Zhang2, Qianqian Lin1, 3, 4, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Qianqian Lin, q.lin@whu.edu.cn; Liming Ding, ding@nanoctr.cn

DOI: 10.1088/1674-4926/43/11/110201

PDF

Turn off MathJax



[1]
Xiao Z, Jia X, Ding L. Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull, 2017, 62, 1562 doi: 10.1016/j.scib.2017.11.003
[2]
Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[3]
Cao J, Nie G, Zhang L, et al. Star polymer donors. J Semicond, 2022, 43, 070201 doi: 10.1088/1674-4926/43/7/070201
[4]
Cao J, Yi L, Ding L. The origin and evolution of Y6 structure. J Semicond, 2022, 43, 030202 doi: 10.1088/1674-4926/43/3/030202
[5]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[6]
Fu H, Wang Z, Sun Y. Polymer donors for high-performance non-fullerene organic solar cells. Angew Chem Int Edit, 2019, 58, 4442 doi: 10.1002/anie.201806291
[7]
Zhang J, Tan H S, Guo X, et al. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat Energy, 2018, 3, 720 doi: 10.1038/s41560-018-0181-5
[8]
Liu J, Wang Y, Wen H, et al. Organic photodetectors: materials, structures, and challenges. Sol RRL, 2020, 4, 2000139 doi: 10.1002/solr.202000139
[9]
Lan Z, Lau Y S, Wang Y, et al. Filter-free band-selective organic photodetectors. Adv Opt Mater, 2020, 8, 2001388 doi: 10.1002/adom.202001388
[10]
Armin A, Hambsch M, Kim I K, et al. Thick junction broadband organic photodiodes. Laser Photon Rev, 2014, 8, 924 doi: 10.1002/lpor.201400081
[11]
Li L, Zhang F, Wang J, et al. Achieving EQE of 16, 700% in P3HT: PC71BM based photodetectors by trap-assisted photomultiplication. Sci Rep, 2015, 5, 9181 doi: 10.1038/srep09181
[12]
Guo D, Yang L, Zhao J, et al. Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1 000 000%. Mater Horizons, 2021, 8, 2293 doi: 10.1039/D1MH00776A
[13]
Lee J, Ko S J, Lee H, et al. Side-chain engineering of nonfullerene acceptors for near-infrared organic photodetectors and photovoltaics. ACS Energy Lett, 2019, 4, 1401 doi: 10.1021/acsenergylett.9b00721
[14]
Li W, Xu Y, Meng X, et al. Visible to near-infrared photodetection based on ternary organic heterojunctions. Adv Funct Mater, 2019, 29, 1808948 doi: 10.1002/adfm.201808948
[15]
Liao X, Xie W, Han Z, et al. NIR photodetectors with highly efficient detectivity enabled by 2D fluorinated dithienopicenocarbazole-based ultra-narrow bandgap acceptors. Adv Funct Mater, 2022, 2204255 doi: 10.1002/adfm.202204255
[16]
Zhao Z, Liu M, Yang K, et al. Highly sensitive narrowband photomultiplication-type organic photodetectors prepared by transfer-printed technology. Adv Funct Mater, 2021, 31, 2106009 doi: 10.1002/adfm.202106009
[17]
Wang W, Zhang F, Du M, et al. Highly narrowband photomultiplication type organic photodetectors. Nano Lett, 2017, 17, 1995 doi: 10.1021/acs.nanolett.6b05418
[18]
Lin Q, Armin A, Burn P L, et al. Filterless narrowband visible photodetectors. Nat Photonics, 2015, 9, 687 doi: 10.1038/nphoton.2015.175
[19]
Armin A, Jansen-van Vuuren R D, Kopidakis N, et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat Commun, 2015, 6, 6343 doi: 10.1038/ncomms7343
[20]
Xie B, Xie R, Zhang K, et al. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat Commun, 2020, 11, 2871 doi: 10.1038/s41467-020-16675-x
[21]
Yang J, Huang J, Li R, et al. Cavity-enhanced near-infrared organic photodetectors based on a conjugated polymer containing [1,2,5]selenadiazolo[3,4-c]pyridine. Chem Mat, 2021, 33, 5147 doi: 10.1021/acs.chemmater.1c01196
[22]
Wang W, Zhang F, Bai H, et al. Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response. Nanoscale, 2016, 8, 5578 doi: 10.1039/C6NR00079G
[23]
Yang K, Zhao Z, Liu M, et al. Employing liquid crystal material as regulator to enhance performance of photomultiplication type polymer photodetectors. Chem Eng J, 2022, 427, 131802 doi: 10.1016/j.cej.2021.131802
[24]
Liu M, Wang J, Zhao Z, et al. Ultra-narrow-band NIR photomultiplication organic photodetectors based on charge injection narrowing. J Phys Chem Lett, 2021, 12, 2937 doi: 10.1021/acs.jpclett.1c00330
[25]
Bai S, Li R, Huang H, et al. Transient analysis of photomultiplication-type organic photodiodes. Appl Phys Rev, 2022, 9, 021405 doi: 10.1063/5.0083361
[26]
Xu Y, Lin Q. Photodetectors based on solution-processable semiconductors: Recent advances and perspectives. Appl Phys Rev, 2020, 7, 011315 doi: 10.1063/1.5144840
[27]
Huang H, Jiang L, Peng J, et al. High-performance organic phototransistors based on D18, a high-mobility and unipolar polymer. Chem Mat, 2021, 33, 8089 doi: 10.1021/acs.chemmater.1c02839
[28]
Zhao Z, Xu C, Niu L, et al. Recent progress on broadband organic photodetectors and their applications. Laser Photon Rev, 2020, 14, 2000262 doi: 10.1002/lpor.202000262
[29]
Ren H, Chen J D, Li Y Q, et al. Recent progress in organic photodetectors and their applications. Adv Sci, 2021, 8, 2002418 doi: 10.1002/advs.202002418
[30]
Liu M, Wang H, Tang Q, et al. Ultrathin air-stable n-type organic phototransistor array for conformal optoelectronics. Sci Rep, 2018, 8, 16612 doi: 10.1038/s41598-018-35062-7
[31]
Li F, Chen Y, Ma C, et al. High-performance near-infrared phototransistor based on n-type small-molecular organic semiconductor. Adv Electron Mater, 2017, 3, 1600430 doi: 10.1002/aelm.201600430
[32]
Xiong S, Li J, Peng J, et al. Water Transfer printing of multilayered near-infrared organic photodetectors. Adv Opt Mater, 2022, 10, 2101837 doi: 10.1002/adom.202101837
[33]
Zhong Z, Peng F, Huang Z, et al. High-detectivity non-fullerene organic photodetectors enabled by a cross-linkable electron blocking layer. ACS Appl Mater Interfaces, 2020, 12, 45092 doi: 10.1021/acsami.0c13833
[34]
Bristow H, Jacoutot P, Scaccabarozzi A D, et al. Nonfullerene-based organic photodetectors for ultrahigh sensitivity visible light detection. ACS Appl Mater Interfaces, 2020, 12, 48836 doi: 10.1021/acsami.0c14016
[35]
Yoon S, Lee G S, Sim K M, et al. End-group functionalization of non-fullerene acceptors for high external quantum efficiency over 150 000% in photomultiplication type organic photodetectors. Adv Funct Mater, 2021, 31, 2006448 doi: 10.1002/adfm.202006448
[36]
Wang H, Li Y, Yao B, et al. Gold nanoparticles-decorated N,N'-dioctyl-3,4,9,10-perylene tetracarboxylic diimide active layer towards remarkably enhanced visible-light photoresponse of an n-type organic phototransistor. Thin Solid Films, 2021, 718, 138478 doi: 10.1016/j.tsf.2020.138478
[37]
Yeliu K, Zhong J, Wang X, et al. High performance n-type vertical organic phototransistors. Org Electron, 2019, 67, 200 doi: 10.1016/j.orgel.2019.01.018
Fig. 1.  (Color online) The performance of non-fullerene OPDs. (a) COi8DFIC; (b) FDTPC-OD. Reproduced with permission[14, 15], Copyright 2019 and 2022, Wiley. (c) OPDs based on Y6 and IEICO-4F. Reproduced with permission[20], Copyright 2020, Nature Publishing Group. (d) Schematic for the cavity-enhanced OPDs; (e) comparison of the absorption coefficients of various BHJs; (f) the narrowband EQE spectra. Reproduced with permission[21], Copyright 2021, American Chemical Society.

Fig. 2.  (Color online) (a, b) Broadband and (c) narrowband PM-type OPDs based on non-fullerene acceptors. Reproduced with permission[2224], Copyright 2016, 2022 and 2021, Royal Society of Chemistry, Elsevier and American Chemical Society. (d) Transfer curves in dark and under illumination for n-type OPTs with PTCDI-C13. Reproduced with permission[30], Copyright 2018, Nature Publishing Group. (e) Schematic for n-type OPTs with BODIPY-BF2; (f) transfer curves in dark and under illumination. Reproduced with permission[31], Copyright 2017, Wiley.

Table 1.   Performance data for different devices.

TypeMaterialDetection window (nm)Response timeDark currentD* (Jones) /
R (A/W)
Ref.
Photodiode
COi8DFIC400–1000900 ns10–5 A/cm2
@ –1 V
7 × 1011/
0.35
[14]
FDTPC-OD300–100037.2 μs8 × 10–11 A2.5 × 1011/
0.4
[15]
IEICO-4F350–10001.56 μs1.14 × 10–9 A/cm2
@ –0.5 V
8.8 × 1011/
0.12
[32]
Y6300–9501.1 μs5.81 × 10–9 A/cm2
@ –0.1 V
1.16 × 1013/
0.5
[33]
Y6800–100010–7 A/cm2
@ –1.5 V
1.2 × 1013/
[20]
O-FBR350–80012 μs1.7 × 10–10 A/cm2
@ –2 V
9.6 × 1012/
0.34
[34]
PM-type OPD
DC-IDT2T300–80010–6 A/cm2
@ –10 V
1.43 × 1014/
131.4
[22]
BEH800–900624 ms2 × 10–6 A/cm2
@ –13 V
8.8 × 1011/
[24]
ETBI-H300–700347 μs2 × 10–5 A/cm2
@ –20 V
2.6 × 1012/
[35]
BTR: BTPV-4F300–7504 ms4 × 10–6 A/cm2
@ –10 V
4.67 × 1010/
102
[23]
Phototransistor
PTCDI-C13H27400–6401 × 10–13 A–/30.73[30]
BODIPY-BF2300–11002 × 10–11 A–/
1.14 × 104
[31]
PTCDI-C8300–12001 × 10–12 A2.85 × 1011/
24.12
[36]
P(NDI2OD-T2)300–8001.5 s1 × 10–10 A3.95 × 1013/
34.8
[37]
DownLoad: CSV
[1]
Xiao Z, Jia X, Ding L. Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull, 2017, 62, 1562 doi: 10.1016/j.scib.2017.11.003
[2]
Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[3]
Cao J, Nie G, Zhang L, et al. Star polymer donors. J Semicond, 2022, 43, 070201 doi: 10.1088/1674-4926/43/7/070201
[4]
Cao J, Yi L, Ding L. The origin and evolution of Y6 structure. J Semicond, 2022, 43, 030202 doi: 10.1088/1674-4926/43/3/030202
[5]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[6]
Fu H, Wang Z, Sun Y. Polymer donors for high-performance non-fullerene organic solar cells. Angew Chem Int Edit, 2019, 58, 4442 doi: 10.1002/anie.201806291
[7]
Zhang J, Tan H S, Guo X, et al. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat Energy, 2018, 3, 720 doi: 10.1038/s41560-018-0181-5
[8]
Liu J, Wang Y, Wen H, et al. Organic photodetectors: materials, structures, and challenges. Sol RRL, 2020, 4, 2000139 doi: 10.1002/solr.202000139
[9]
Lan Z, Lau Y S, Wang Y, et al. Filter-free band-selective organic photodetectors. Adv Opt Mater, 2020, 8, 2001388 doi: 10.1002/adom.202001388
[10]
Armin A, Hambsch M, Kim I K, et al. Thick junction broadband organic photodiodes. Laser Photon Rev, 2014, 8, 924 doi: 10.1002/lpor.201400081
[11]
Li L, Zhang F, Wang J, et al. Achieving EQE of 16, 700% in P3HT: PC71BM based photodetectors by trap-assisted photomultiplication. Sci Rep, 2015, 5, 9181 doi: 10.1038/srep09181
[12]
Guo D, Yang L, Zhao J, et al. Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1 000 000%. Mater Horizons, 2021, 8, 2293 doi: 10.1039/D1MH00776A
[13]
Lee J, Ko S J, Lee H, et al. Side-chain engineering of nonfullerene acceptors for near-infrared organic photodetectors and photovoltaics. ACS Energy Lett, 2019, 4, 1401 doi: 10.1021/acsenergylett.9b00721
[14]
Li W, Xu Y, Meng X, et al. Visible to near-infrared photodetection based on ternary organic heterojunctions. Adv Funct Mater, 2019, 29, 1808948 doi: 10.1002/adfm.201808948
[15]
Liao X, Xie W, Han Z, et al. NIR photodetectors with highly efficient detectivity enabled by 2D fluorinated dithienopicenocarbazole-based ultra-narrow bandgap acceptors. Adv Funct Mater, 2022, 2204255 doi: 10.1002/adfm.202204255
[16]
Zhao Z, Liu M, Yang K, et al. Highly sensitive narrowband photomultiplication-type organic photodetectors prepared by transfer-printed technology. Adv Funct Mater, 2021, 31, 2106009 doi: 10.1002/adfm.202106009
[17]
Wang W, Zhang F, Du M, et al. Highly narrowband photomultiplication type organic photodetectors. Nano Lett, 2017, 17, 1995 doi: 10.1021/acs.nanolett.6b05418
[18]
Lin Q, Armin A, Burn P L, et al. Filterless narrowband visible photodetectors. Nat Photonics, 2015, 9, 687 doi: 10.1038/nphoton.2015.175
[19]
Armin A, Jansen-van Vuuren R D, Kopidakis N, et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat Commun, 2015, 6, 6343 doi: 10.1038/ncomms7343
[20]
Xie B, Xie R, Zhang K, et al. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat Commun, 2020, 11, 2871 doi: 10.1038/s41467-020-16675-x
[21]
Yang J, Huang J, Li R, et al. Cavity-enhanced near-infrared organic photodetectors based on a conjugated polymer containing [1,2,5]selenadiazolo[3,4-c]pyridine. Chem Mat, 2021, 33, 5147 doi: 10.1021/acs.chemmater.1c01196
[22]
Wang W, Zhang F, Bai H, et al. Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response. Nanoscale, 2016, 8, 5578 doi: 10.1039/C6NR00079G
[23]
Yang K, Zhao Z, Liu M, et al. Employing liquid crystal material as regulator to enhance performance of photomultiplication type polymer photodetectors. Chem Eng J, 2022, 427, 131802 doi: 10.1016/j.cej.2021.131802
[24]
Liu M, Wang J, Zhao Z, et al. Ultra-narrow-band NIR photomultiplication organic photodetectors based on charge injection narrowing. J Phys Chem Lett, 2021, 12, 2937 doi: 10.1021/acs.jpclett.1c00330
[25]
Bai S, Li R, Huang H, et al. Transient analysis of photomultiplication-type organic photodiodes. Appl Phys Rev, 2022, 9, 021405 doi: 10.1063/5.0083361
[26]
Xu Y, Lin Q. Photodetectors based on solution-processable semiconductors: Recent advances and perspectives. Appl Phys Rev, 2020, 7, 011315 doi: 10.1063/1.5144840
[27]
Huang H, Jiang L, Peng J, et al. High-performance organic phototransistors based on D18, a high-mobility and unipolar polymer. Chem Mat, 2021, 33, 8089 doi: 10.1021/acs.chemmater.1c02839
[28]
Zhao Z, Xu C, Niu L, et al. Recent progress on broadband organic photodetectors and their applications. Laser Photon Rev, 2020, 14, 2000262 doi: 10.1002/lpor.202000262
[29]
Ren H, Chen J D, Li Y Q, et al. Recent progress in organic photodetectors and their applications. Adv Sci, 2021, 8, 2002418 doi: 10.1002/advs.202002418
[30]
Liu M, Wang H, Tang Q, et al. Ultrathin air-stable n-type organic phototransistor array for conformal optoelectronics. Sci Rep, 2018, 8, 16612 doi: 10.1038/s41598-018-35062-7
[31]
Li F, Chen Y, Ma C, et al. High-performance near-infrared phototransistor based on n-type small-molecular organic semiconductor. Adv Electron Mater, 2017, 3, 1600430 doi: 10.1002/aelm.201600430
[32]
Xiong S, Li J, Peng J, et al. Water Transfer printing of multilayered near-infrared organic photodetectors. Adv Opt Mater, 2022, 10, 2101837 doi: 10.1002/adom.202101837
[33]
Zhong Z, Peng F, Huang Z, et al. High-detectivity non-fullerene organic photodetectors enabled by a cross-linkable electron blocking layer. ACS Appl Mater Interfaces, 2020, 12, 45092 doi: 10.1021/acsami.0c13833
[34]
Bristow H, Jacoutot P, Scaccabarozzi A D, et al. Nonfullerene-based organic photodetectors for ultrahigh sensitivity visible light detection. ACS Appl Mater Interfaces, 2020, 12, 48836 doi: 10.1021/acsami.0c14016
[35]
Yoon S, Lee G S, Sim K M, et al. End-group functionalization of non-fullerene acceptors for high external quantum efficiency over 150 000% in photomultiplication type organic photodetectors. Adv Funct Mater, 2021, 31, 2006448 doi: 10.1002/adfm.202006448
[36]
Wang H, Li Y, Yao B, et al. Gold nanoparticles-decorated N,N'-dioctyl-3,4,9,10-perylene tetracarboxylic diimide active layer towards remarkably enhanced visible-light photoresponse of an n-type organic phototransistor. Thin Solid Films, 2021, 718, 138478 doi: 10.1016/j.tsf.2020.138478
[37]
Yeliu K, Zhong J, Wang X, et al. High performance n-type vertical organic phototransistors. Org Electron, 2019, 67, 200 doi: 10.1016/j.orgel.2019.01.018
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1469 Times PDF downloads: 137 Times Cited by: 0 Times

    History

    Received: 04 August 2022 Revised: Online: Accepted Manuscript: 04 August 2022Uncorrected proof: 05 August 2022Published: 01 November 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Songxue Bai, Lixiu Zhang, Qianqian Lin, Liming Ding. Organic photodetectors with non-fullerene acceptors[J]. Journal of Semiconductors, 2022, 43(11): 110201. doi: 10.1088/1674-4926/43/11/110201 ****Songxue Bai, Lixiu Zhang, Qianqian Lin, Liming Ding. 2022: Organic photodetectors with non-fullerene acceptors. Journal of Semiconductors, 43(11): 110201. doi: 10.1088/1674-4926/43/11/110201
      Citation:
      Songxue Bai, Lixiu Zhang, Qianqian Lin, Liming Ding. Organic photodetectors with non-fullerene acceptors[J]. Journal of Semiconductors, 2022, 43(11): 110201. doi: 10.1088/1674-4926/43/11/110201 ****
      Songxue Bai, Lixiu Zhang, Qianqian Lin, Liming Ding. 2022: Organic photodetectors with non-fullerene acceptors. Journal of Semiconductors, 43(11): 110201. doi: 10.1088/1674-4926/43/11/110201

      Organic photodetectors with non-fullerene acceptors

      DOI: 10.1088/1674-4926/43/11/110201
      More Information
      • Songxue Bai:is a PhD candidate at the School of Physics and Technology, Wuhan University, under the supervision of Prof. Qianqian Lin. Her research interests include organic photodetectors and optoelectronic devices based onperovskites and chalcogenides
      • Lixiu Zhang:got her BS from Soochow University in 2019. Now she is a PhD student at University of Chinese Academy of Sciences under the supervision of Prof. Liming Ding. Her research focuses on perovskite solar cells
      • Qianqian Lin:is currently a professor of materials physics at the School of Physics and Technology, Wuhan University. He received his PhD degree from the Queensland University, Australia, in 2016. After a postdoc in the Clarendon Laboratory at University of Oxford, he joined Wuhan University in 2017. His research focuses onfunctional materials and optoelectronic devices
      • Liming Ding:got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and ArgonneNational Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editor for Journal of Semiconductors
      • Corresponding author: q.lin@whu.edu.cnding@nanoctr.cn
      • Received Date: 2022-08-04
        Available Online: 2022-08-04

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return