Citation: |
Yiling Nie, Pengshan Xie, Xu Chen, Chenxing Jin, Wanrong Liu, Xiaofang Shi, Yunchao Xu, Yongyi Peng, Johnny C. Ho, Jia Sun, Junliang Yang. Hybrid C8-BTBT/InGaAs nanowire heterojunction for artificial photosynaptic transistors[J]. Journal of Semiconductors, 2022, 43(11): 112201. doi: 10.1088/1674-4926/43/11/112201
****
Yiling Nie, Pengshan Xie, Xu Chen, Chenxing Jin, Wanrong Liu, Xiaofang Shi, Yunchao Xu, Yongyi Peng, Johnny C. Ho, Jia Sun, Junliang Yang. 2022: Hybrid C8-BTBT/InGaAs nanowire heterojunction for artificial photosynaptic transistors. Journal of Semiconductors, 43(11): 112201. doi: 10.1088/1674-4926/43/11/112201
|
Hybrid C8-BTBT/InGaAs nanowire heterojunction for artificial photosynaptic transistors
doi: 10.1088/1674-4926/43/11/112201
More Information-
Abstract
The emergence of light-tunable synaptic transistors provides opportunities to break through the von Neumann bottleneck and enable neuromorphic computing. Herein, a multifunctional synaptic transistor is constructed by using 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and indium gallium arsenide (InGaAs) nanowires (NWs) hybrid heterojunction thin film as the active layer. Under illumination, the Type-I C8-BTBT/InGaAs NWs heterojunction would make the dissociated photogenerated excitons more difficult to recombine. The persistent photoconductivity caused by charge trapping can then be used to mimic photosynaptic behaviors, including excitatory postsynaptic current, long/short-term memory and Pavlovian learning. Furthermore, a high classification accuracy of 89.72% can be achieved through the single-layer-perceptron hardware-based neural network built from C8-BTBT/InGaAs NWs synaptic transistors. Thus, this work could provide new insights into the fabrication of high-performance optoelectronic synaptic devices.-
Keywords:
- photonic synaptic transistor,
- C8-BTBT,
- InGaAs,
- heterojunction
-
References
[1] Ahmed T, Tahir M, Low M X, et al. Fully Light-controlled memory and neuromorphic computation in layered black phosphorus. Adv Mater, 2021, 33, 2004207 doi: 10.1002/adma.202004207[2] Hou Y X, Li Y, Zhang Z C, et al. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano, 2021, 15, 1497 doi: 10.1021/acsnano.0c08921[3] Lee M, Kim M, Jo J W, et al. Suppression of persistent photo-conductance in solution-processed amorphous oxide thin-film transistors. Appl Phys Lett, 2018, 112, 052103 doi: 10.1063/1.4999934[4] Lee M, Lee W, Choi S, et al. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv Mater, 2017, 29, 1700951 doi: 10.1002/adma.201700951[5] Lv Z, Chen M, Qian F, et al. Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv Funct Mater, 2019, 29, 1902374 doi: 10.1002/adfm.201902374[6] Wang H, Zhao Q, Ni Z, et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv Mater, 2018, 30, 1803961 doi: 10.1002/adma.201803961[7] Wang X, Lu Y, Zhang J, et al. Highly sensitive artificial visual array using transistors based on porphyrins and semiconductors. Small, 2021, 17, 2005491 doi: 10.1002/smll.202005491[8] Xie D, Wei L, Xie M, et al. Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor. Adv Funct Mater, 2021, 31, 2010655 doi: 10.1002/adfm.202010655[9] Zhu L Q, Wan C J, Guo L Q, et al. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat Commun, 2014, 5, 1 doi: 10.1038/ncomms4158[10] Abbott L F, Regehr W G. Synaptic computation. Nature, 2004, 431, 796 doi: 10.1038/nature03010[11] Sung S H, Kim T J, Shin H, et al. Memory-centric neuromorphic computing for unstructured data processing. Nano Res, 2021, 14, 3126 doi: 10.1007/s12274-021-3452-6[12] Qian C, Kong L A, Yang J, et al. Multi-gate organic neuron transistors for spatiotemporal information processing. Appl Phys Lett, 2017, 110, 083302 doi: 10.1063/1.4977069[13] Wan C J, Zhu L Q, Liu Y H, et al. Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems. Adv Mater, 2016, 28, 3557 doi: 10.1002/adma.201505898[14] Han C, Han X, Han J, et al. Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application. Adv Funct Mater, 2022, 32, 2113053 doi: 10.1002/adfm.202113053[15] Qian C, Choi Y, Choi Y J, et al. Oxygen-detecting synaptic device for realization of artificial autonomic nervous system for maintaining oxygen homeostasis. Adv Mater, 2020, 32, 2002653 doi: 10.1002/adma.202002653[16] Jang Y, Park J, Kang J, et al. Amorphous InGaZnO (a-IGZO) synaptic transistor for neuromorphic computing. ACS Appl Electron Mater, 2022, 4, 1427 doi: 10.1021/acsaelm.1c01088[17] Yan X, Qian J H, Sangwan V K, et al. Progress and challenges for memtransistors in neuromorphic circuits and systems. Adv Mater, 2022, 2108025 doi: 10.1002/adma.202108025[18] Huh W, Lee D, Lee C H. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv Mater, 2020, 32, 2002092 doi: 10.1002/adma.202002092[19] Shi J, Ha S D, Zhou Y, et al. A correlated nickelate synaptic transistor. Nat Commun, 2013, 4, 1 doi: 10.1038/ncomms3676[20] Suri M, Bichler O, Querlioz D, et al. Physical aspects of low power synapses based on phase change memory devices. J Appl Phys, 2012, 112, 054904 doi: 10.1063/1.4749411[21] Shim H, Jang S, Jang J G, et al. Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Res, 2022, 15, 758 doi: 10.1007/s12274-021-3602-x[22] Kuramochi E, Nozaki K, Shinya A, et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nat Photonics, 2014, 8, 474 doi: 10.1038/nphoton.2014.93[23] Luo Z, Xie Y, Li Z, et al. Plasmonically engineered light-matter interactions in Au-nanoparticle/MoS2 heterostructures for artificial optoelectronic synapse. Nano Res, 2022, 15, 3539 doi: 10.1007/s12274-021-3875-0[24] Qian L, Sun Y, Wu M, et al. A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 2018, 10(15), 6837 doi: 10.1039/C8NR00914G[25] Sun Y, Qian L, Xie D, et al. Photoelectric synaptic plasticity realized by 2D perovskite. Adv Funct Mater, 2019, 29(28), 1902538 doi: 10.1002/adfm.201902538[26] Wang S, Chen C, Yu Z, et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv Mater, 2019, 31, 1806227 doi: 10.1002/adma.201806227[27] Qin S, Wang F, Liu Y, et al. A light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Mater, 2017, 4, 035022 doi: 10.1088/2053-1583/aa805e[28] Wang Y, Yang J, Wang Z, et al. Near-infrared annihilation of conductive filaments in quasiplane MoSe2/Bi2Se3 nanosheets for mimicking heterosynaptic plasticity. Small, 2019, 15, 1805431 doi: 10.1002/smll.201805431[29] Yang B, Lu Y, Jiang D, et al. Bioinspired multifunctional organic transistors based on natural chlorophyll/organic semiconductors. Adv Mater, 2020, 32, 2001227 doi: 10.1002/adma.202001227[30] Hou J J, Wang F, Han N, et al. Stoichiometric effect on electrical, optical, and structural properties of composition-tunable In xGa1– xAs nanowires. ACS Nano, 2012, 6, 9320 doi: 10.1021/nn304174g[31] Huang Y, Sun J, Zhang J, et al. Controllable thin-film morphology and structure for 2,7-dioctyl[1]benzothieno[3,2-b][1] benzothiophene (C8-BTBT) based organic field-effect transistors. Org Electron, 2016, 36, 73 doi: 10.1016/j.orgel.2016.05.019[32] Xie P, Liu T, Sun J, et al. Solution-processed ultra-flexible C8-BTBT organic thin-film transistors with the corrected mobility over 18 cm2/(V·s). Sci Bull, 2020, 65, 791 doi: 10.1016/j.scib.2020.03.013[33] Tong S, Sun J, Wang C, et al. High-performance broadband perovskite photodetectors based on CH3NH3PbI3/C8-BTBT heterojunction. Adv Electron Mater, 2017, 3, 1700058 doi: 10.1002/aelm.201700058[34] Yuan Y, Huang J. Ultrahigh gain, low noise, ultraviolet photodetectors with highly aligned organic crystals. Adv Opt Mater, 2016, 4, 264 doi: 10.1002/adom.201500560[35] Mukherjee A, Sagar S, Parveen S, et al. Superionic rubidium silver iodide gated low voltage synaptic transistor. Appl Phys Lett, 2021, 119, 253502 doi: 10.1063/5.0069478[36] Kim S, Choi B, Lim M, et al. Pattern recognition using carbon nanotube synaptic transistors with an adjustable weight update protocol. ACS Nano, 2017, 11, 2814 doi: 10.1021/acsnano.6b07894[37] Dai S, Wu X, Liu D, et al. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl Mater Interfaces, 2018, 10, 21472 doi: 10.1021/acsami.8b05036[38] Han J, Wang J, Yang M, et al. Graphene/organic semiconductor heterojunction phototransistors with broadband and bi-directional photoresponse. Adv Mater, 2018, 30, 1804020 doi: 10.1002/adma.201804020[39] Xia H, Tong S, Zhang C, et al. Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8-BTBT bulk heterojunction. Appl Phys Lett, 2018, 112, 233301 doi: 10.1063/1.5024330[40] Yang D, Zhang X, Wang K, et al. Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers. Nano Lett, 2019, 19, 3313 doi: 10.1021/acs.nanolett.9b00936[41] Xu L, Xiong H, Fu Z, et al. High conductance margin for efficient neuromorphic computing enabled by stacking nonvolatile van der waals transistors. Phys Rev Appl, 2021, 16, 044049 doi: 10.1103/PhysRevApplied.16.044049[42] Yu F, Zhu L Q, Xiao H, et al. Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and pavlovian associative learning activities. Adv Funct Mater, 2018, 28, 1804025 doi: 10.1002/adfm.201804025[43] Guo Y B, Zhu L Q, Long T Y, et al. Bio-polysaccharide electrolyte gated photoelectric synergic coupled oxide neuromorphic transistor with Pavlovian activities. J Mater Chem C, 2020, 8, 2780 doi: 10.1039/C9TC06749C[44] Qian C, Oh S, Choi Y, et al. Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing. Nano Energy, 2019, 66, 104095 doi: 10.1016/j.nanoen.2019.104095[45] Kim S, Heo K, Lee S, et al. Ferroelectric polymer-based artificial synapse for neuromorphic computing. Nanoscale Horiz, 2021, 6, 139 doi: 10.1039/D0NH00559B[46] Li E, Wu X, Chen Q, et al. Nanoscale channel organic ferroelectric synaptic transistor array for high recognition accuracy neuromorphic computing. Nano Energy, 2021, 85, 106010 doi: 10.1016/j.nanoen.2021.106010[47] Prezioso M, Merrikh-Bayat F, Hoskins B, et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 2015, 521, 61 doi: 10.1038/nature14441 -
Supplements
2022112201suppl.pdf -
Proportional views
§Yiling Nie, Pengshan Xie and Xu Chen contributed equally to this work.