Citation: |
Zixu Sa, Fengjing Liu, Dong Liu, Mingxu Wang, Jie Zhang, Yanxue Yin, Zhiyong Pang, Xinming Zhuang, Peng Wang, Zaixing Yang. Ag-catalyzed GaSb nanowires for flexible near-infrared photodetectors[J]. Journal of Semiconductors, 2022, 43(11): 112302. doi: 10.1088/1674-4926/43/11/112302
****
Zixu Sa, Fengjing Liu, Dong Liu, Mingxu Wang, Jie Zhang, Yanxue Yin, Zhiyong Pang, Xinming Zhuang, Peng Wang, Zaixing Yang. 2022: Ag-catalyzed GaSb nanowires for flexible near-infrared photodetectors. Journal of Semiconductors, 43(11): 112302. doi: 10.1088/1674-4926/43/11/112302
|
Ag-catalyzed GaSb nanowires for flexible near-infrared photodetectors
DOI: 10.1088/1674-4926/43/11/112302
More Information
-
Abstract
High-quality narrow bandgap semiconductors nanowires (NWs) challenge the flexible near-infrared (NIR) photodetectors in next-generation imaging, data communication, environmental monitoring, and bioimaging applications. In this work, complementary metal oxide semiconductor-compatible metal of Ag is deposited on glass as the growth catalyst for the surfactant-assisted chemical vapor deposition of GaSb NWs. The uniform morphology, balance stoichiometry, high-quality crystallinity, and phase purity of as-prepared NWs are checked by scanning electron microscopy, energy dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and X-ray diffraction. The electrical properties of as-prepared NWs are studied by constructing back-gated field-effect-transistors, displaying a high Ion/Ioff ratio of 104 and high peak hole mobility of 400 cm2/(V·s). Benefiting from the excellent electrical and mechanical flexibility properties, the as-fabricated NW flexible NIR photodetector exhibits high sensitivity and excellent photoresponse, with responsivity as high as 618 A/W and detectivity as high as 6.7 × 1010 Jones. Furthermore, there is no obvious decline in NIR photodetection behavior, even after parallel and perpendicular folding with 1200 cycles. -
References
[1] Ran W H, Wang L L, Zhao S F, et al. An integrated flexible all-nanowire infrared sensing system with record photosensitivity. Adv Mater, 2022, 32, 1908419 doi: 10.1002/adma.201908419[2] Wei S L, Wang F, Zou X M, et al. Flexible quasi-2D perovskite/IGZO phototransistors for ultrasensitive and broadband photodetection. Adv Mater, 2020, 32, 1907527 doi: 10.1002/adma.201907527[3] Li Z Y, Trendafilov S, Zhang F L, et al. Broadband GaAsSb nanowire array photodetectors for filter-free multispectral imaging. Nano Lett, 2021, 21, 7388 doi: 10.1021/acs.nanolett.1c02777[4] Yip S, Shen L F, Ho J C. Recent advances in flexible photodetectors based on 1D nanostructures. J Semicond, 2019, 40, 111602 doi: 10.1088/1674-4926/40/11/111602[5] Xie C, Yan F. Flexible photodetectors based on novel functional materials. Small 2017, 13, 1701, 822 doi: 10.1002/smll.201701822[6] Lou Z, Shen G Z. Flexible photodetectors based on 1D inorganic nanostructures. Adv Sci, 2016, 3, 1500287 doi: 10.1002/advs.201500287[7] Li P, Hao Q Y, Liu J D, et al. Flexible photodetectors based on all-solution-processed Cu electrodes and InSe nanoflakes with high stabilities. Adv Funct Mater, 2021, 32, 2108261 doi: 10.1002/adfm.202108261[8] Li J, Wang Z X, Chu J W, et al. Oriented layered Bi2O2Se nanowire arrays for ultrasensitive photodetectors. Appl Phys Lett, 2019, 114, 151104 doi: 10.1063/1.5094192[9] Wu D J, Zhou H, Song Z H, et al. Welding perovskite nanowires for stable, sensitive, flexible photodetectors. ACS Nano, 2020, 14, 2777 doi: 10.1021/acsnano.9b09315[10] Tao J Y, Xiao Z J, Wang J F, et al. A self-powered, flexible photodetector based on perovskite nanowires with Ni-Al electrodes. J Alloys Compd, 2020, 845, 155311 doi: 10.1016/j.jallcom.2020.155311[11] Lou Z, Yang X L, Chen H R, et al. Flexible ultraviolet photodetectors based on ZnO–SnO2 heterojunction nanowire arrays. J Semicond, 2018, 39, 024002 doi: 10.1088/1674-4926/39/2/024002[12] Li D P, Yip S, Li F Z, et al. Flexible near-infrared InGaSb nanowire array detectors with ultrafast photoconductive response below 20 µs. Adv Opt Mater, 2020, 8, 2001201 doi: 10.1002/adom.202001201[13] Rezaei M, Bianconi S, Lauhon L, et al. A new approach to designing high-sensitivity low-dimensional photodetectors. Nano Lett, 2021, 21, 9838 doi: 10.1021/acs.nanolett.1c03665[14] Barrigon E, Heurlin M, Bi Z, et al. Synthesis and applications of III-V nanowires. Chem Rev, 2019, 119, 9170 doi: 10.1021/acs.chemrev.9b00075[15] Yuan X M, Pan D, Zhou Y J, et al. Selective area epitaxy of III–V nanostructure arrays and networks: growth, applications, and future directions. Appl Phys Rev, 2021, 8, 021302 doi: 10.1063/5.0044706[16] Zuo X R, Li Z Y, Wong W W, et al. Design of InAs nanosheet arrays with ultrawide polarization-independent high absorption for infrared photodetection. Appl Phys Lett, 2022, 120, 071109 doi: 10.1063/5.0066507[17] Zhong Z Q, Li X L, Wu J, et al. Wavelength-tunable InAsP quantum dots in InP nanowires. Appl Phys Lett, 2019, 115, 053101 doi: 10.1063/1.5095675[18] Ji X H, Yang X G, Yang T. Self-catalyzed growth of vertical GaSb nanowires on InAs stems by metal-organic chemical vapor deposition. Nanoscale Res Lett, 2017, 12, 428 doi: 10.1186/s11671-017-2207-5[19] Wen L J, Pan D, Liao D X, et al. Foreign-catalyst-free GaSb nanowires directly grown on cleaved Si substrates by molecular-beam epitaxy. Nanotechnology, 2020, 31, 155601 doi: 10.1088/1361-6528/ab5d78[20] Jeppsson M, Dick K A, Nilsson H A, et al. Characterization of GaSb nanowires grown by MOVPE. J Cryst Growth, 2008, 310, 5119 doi: 10.1016/j.jcrysgro.2008.07.061[21] Yin Y X, Guo Y N, Liu D, et al. Substrate-free chemical vapor deposition of large-scale Ⅲ-Ⅴ nanowires for high-performance transistors and broad-spectrum photodetectors. Adv Opt Mater, 2022, 10, 2102291 doi: 10.1002/adom.202102291[22] Yang Z X, Han N, Fang M, et al. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat Commun, 2014, 5, 5249 doi: 10.1038/ncomms6249[23] Yang Z X, Yin Y X, Sun J M, et al. Chalcogen passivation: an in-situ method to manipulate the morphology and electrical property of GaAs nanowires. Sci Rep, 2018, 8, 6928 doi: 10.1038/s41598-018-25209-x[24] Yang Z X, Liu L Z, Yip S, et al. Complementary metal oxide semiconductor-compatible, high-mobility, 111-oriented GaSb nanowires enabled by vapor-solid-solid chemical vapor deposition. ACS Nano, 2017, 11, 4237 doi: 10.1021/acsnano.7b01217[25] Sun J M, Peng M, Zhang Y S, et al. Ultrahigh hole mobility of Sn-catalyzed GaSb nanowires for high speed infrared photodetectors. Nano Lett, 2019, 19, 5920 doi: 10.1021/acs.nanolett.9b01503[26] Han N, Wang Y, Yang Z X, et al. Controllable Ⅲ-Ⅴ nanowire growth via catalyst epitaxy. J Mater Chem C, 2017, 5, 4393 doi: 10.1039/C7TC00900C[27] Luo T, Liang B, Liu Z, et al. Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response. Sci Bull, 2015, 60, 101 doi: 10.1007/s11434-014-0687-6[28] Zhang K, Chai R Q, Shi R L, et al. Self-catalyzed growth of GaSb nanowires for high performance ultraviolet-visible-near infrared photodetectors. Sci China Mater, 2019, 63, 383 doi: 10.1007/s40843-019-1189-7[29] Sun J M, Zhuang X M, Fan Y B, et al. Toward unusual-high hole mobility of p-channel field-effect-transistors. Small, 2021, 17, 2102323 doi: 10.1002/smll.202102323[30] Liu D, Liu F J, Liu Y, et al. Schottky-contacted high-performance GaSb nanowires photodetectors enabled by lead-free all-inorganic perovskites decoration. Small, 2022, 18, 2200415 doi: 10.1002/smll.202200415[31] Miao J S, Hu W D, Guo N, et al. Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano, 2014, 8, 3628 doi: 10.1021/nn500201g[32] Al-Zahrani S, Pal J, Migliorato M A, et al. Piezoelectric field enhancement in III-V core–shell nanowires. Nano Energy, 2015, 14, 382 doi: 10.1016/j.nanoen.2014.11.046[33] Holmer J, Zeng L, Kanne T, et al. Enhancing the nir photocurrent in single GaAs nanowires with radial p-i-n junctions by uniaxial strain. Nano Lett, 2021, 21, 9038 doi: 10.1021/acs.nanolett.1c02468[34] Ford A C, Ho J C, Chueh Y L, et al. Diameter-dependent electron mobility of InAs nanowires. Nano Lett, 2009, 9, 360 doi: 10.1021/nl803154m[35] Burke R A, Weng X J, Kuo M W, et al. Growth and characterization of unintentionally doped GaSb nanowires. J Electron Mater, 2010, 39, 355 doi: 10.1007/s11664-010-1140-5[36] Kranzer D. Mobility of holes of zinc-blende III-V and II-VI compounds. Phys Status Solidi A, 1974, 26, 11 doi: 10.1002/pssa.2210260102[37] Jie J S, Zhang W J, Jiang Y, at al. Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett, 2006, 6, 1887 doi: 10.1021/nl060867g[38] Fang H H, Hu W D, Wang P, et al. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire. Nano Lett, 2016, 16, 6416 doi: 10.1021/acs.nanolett.6b02860[39] Kind H, Yan H Q, Messer B, et al. Nanowire ultraviolet photodetectors and optical switches. Adv Mater, 2002, 14, 158 doi: 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W[40] Liu X, Gu L L, Zhang Q P, et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat Commun, 2014, 5, 4007 doi: 10.1038/ncomms5007[41] Zheng D S, Wang J L, Hu W D, et al. When nanowires meet ultrahigh ferroelectric field-high-performance full-depleted nanowire photodetectors. Nano Lett, 2016, 16, 2548 doi: 10.1021/acs.nanolett.6b00104[42] Liu L, Wu L M, Wang A W, et al. Ferroelectric-gated InSe photodetectors with high on/off ratios and photoresponsivity. Nano Lett, 2020, 20, 6666 doi: 10.1021/acs.nanolett.0c02448[43] Ren Z H, Wang P, Zhang K, et al. Short-wave near-infrared polarization sensitive photodetector based on GaSb nanowire. IEEE Electron Device Lett, 2021, 42, 549 doi: 10.1109/LED.2021.3061705[44] Zhang K, Ren Z H, Cao H C, et al. Near-infrared polarimetric image sensors based on ordered sulfur-passivation GaSb nanowire arrays. ACS Nano, 2022, 16, 8128 doi: 10.1021/acsnano.2c01455[45] Liu Z, Chen G, Liang B, et al. Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors. Opt Express, 2013, 21, 7799 doi: 10.1364/OE.21.007799[46] Yao Y, Huang W, Chen J H, et al. Flexible complementary circuits operating at sub-0.5V via hybrid organic-inorganic electrolyte-gated transistors. Proc Natl Acad Sci USA, 2021, 118, 44 doi: 10.1073/pnas.2111790118 -
Supplements
2022-112302.pdf -
Proportional views