Citation: |
Haiyue Dong, Lixiu Zhang, Wenhua Zhang, Jilin Wang, Xiaoliang Zhang, Liming Ding. Single crystals of perovskites[J]. Journal of Semiconductors, 2022, 43(12): 120201. doi: 10.1088/1674-4926/43/12/120201
****
Haiyue Dong, Lixiu Zhang, Wenhua Zhang, Jilin Wang, Xiaoliang Zhang, Liming Ding. 2022: Single crystals of perovskites. Journal of Semiconductors, 43(12): 120201. doi: 10.1088/1674-4926/43/12/120201
|
-
References
[1] Li L, Chen H Y, Fang Z M, et al. An electrically modulated single-color/dual-color imaging photodetector. Adv Mater, 2020, 32, 1907257 doi: 10.1002/adma.201907257[2] Zhao D W, Ding L M. All-perovskite tandem structures shed light on thin-film photovoltaics. Sci Bull, 2020, 65, 1144 doi: 10.1016/j.scib.2020.04.013[3] Zuo C T, Ding L M. Drop-casting to make efficient perovskite solar cells under high humidity. Angew Chem Int Ed, 2021, 60, 11242 doi: 10.1002/anie.202101868[4] Cheng Y H, Ding L M. Pushing commercialization of perovskite solar cells by improving their intrinsic stability. Energy Environ Sci, 2021, 14, 3233 doi: 10.1039/D1EE00493J[5] Xiang H Y, Zuo C T, Zeng H B, et al. White light-emitting diodes from perovskites. J Semicond, 2021, 42, 030202 doi: 10.1088/1674-4926/42/3/030202[6] Wang S R, Wang A L, Hao F, et al. Renaissance of tin halide perovskite solar cells. J Semicond, 2021, 42, 030201 doi: 10.1088/1674-4926/42/3/030201[7] Liu L, Xiao Z, Zuo C T, et al. Inorganic perovskite/organic tandem solar cells with efficiency over 20%. J Semicond, 2021, 42, 020501 doi: 10.1088/1674-4926/42/2/020501[8] Zhang M Q, Zuo C T, Tian J J, et al. Blue perovskite LEDs. J Semicond, 2021, 42, 070201 doi: 10.1088/1674-4926/42/7/070201[9] Ma Z W, Xiao G J, Ding L M. Pressure-induced emission from low-dimensional perovskites. J Semicond, 2021, 42, 100203 doi: 10.1088/1674-4926/42/10/100203[10] Zhou H, Wang H, Ding L M. Perovskite nanowire networks for photodetectors. J Semicond, 2021, 42, 110202 doi: 10.1088/1674-4926/42/11/110202[11] Li M B, Zhou J J, Tan H, et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. The Innovation, 2022, 3, 100310 doi: 10.1016/j.xinn.2022.100310[12] Mei L Y, Mu H R, Zhu L, et al. Frontier applications of perovskites beyond photovoltaics. J Semicond, 2022, 43, 040203 doi: 10.1088/1674-4926/43/4/040203[13] Pan X Y, Ding L M. Application of metal halide perovskite photodetectors. J Semicond, 2022, 43, 020203 doi: 10.1088/1674-4926/43/2/020203[14] Zhang L X, Pan X Y, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203[15] Wang S Y, Tan L G, Zhou J J, et al. Over 24% efficient MA-free Cs xFA1– xPbX3 perovskite solar cells. Joule, 2022, 6, 1344 doi: 10.1016/j.joule.2022.05.002[16] Weber D. CH3NH3SnBr xI3– x (x = 0–3), a Sn(II)-system with cubic perovskite structure. Z Naturforsch B, 1978, 33, 862 doi: 10.1515/znb-1978-0809[17] Ke L L, Ding L M. Perovskite crystallization. J Semicond, 2021, 42, 080203 doi: 10.1088/1674-4926/42/8/080203[18] Li Y L, Ding L M. Single-crystal perovskite devices. Sci Bull, 2021, 66, 214 doi: 10.1016/j.scib.2020.09.026[19] Saidaminov M I, Abdelhady A L, Murali B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun, 2015, 6, 7586 doi: 10.1038/ncomms8586[20] Dong Q F, Fang Y J, Shao Y C, et al. Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347, 967 doi: 10.1126/science.aaa5760[21] Dang Y Y, Liu Y, Sun Y X, et al. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3. CrystEngComm, 2015, 17, 665 doi: 10.1039/C4CE02106A[22] Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519 doi: 10.1126/science.aaa2725[23] Zuo C T, Ding L M. Lead-free perovskite materials (NH4)3Sb2- I xBr9– x. Angew Chem Int Ed, 2017, 56, 6528 doi: 10.1002/anie.201702265[24] Chen Z L, Turedi B, Alsalloum A Y, et al. Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett, 2019, 4, 1258 doi: 10.1021/acsenergylett.9b00847[25] Alsalloum A Y, Turedi B, Zheng X P, et al. Low-temperature crystallization enables 21.9% efficient single-crystal MAPbI3 inverted perovskite solar cells. ACS Energy Lett, 2020, 5, 657 doi: 10.1021/acsenergylett.9b02787[26] Alsalloum A Y, Turedi B, Almasabi K, et al. 22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap. Energy Environ Sci, 2021, 14, 2263 doi: 10.1039/D0EE03839C[27] Lian Z P, Yan Q F, Lv Q R, et al. High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal. Sci Rep, 2015, 5, 16563 doi: 10.1038/srep16563[28] Bao C X, Chen Z L, Fang Y J, et al. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv Mater, 2017, 29, 1703209 doi: 10.1002/adma.201703209[29] Wei H T, Fang Y J, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics, 2016, 10, 333 doi: 10.1038/nphoton.2016.41[30] Pan W C, Wu H D, Luo J J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat Photonics, 2017, 11, 726 doi: 10.1038/s41566-017-0012-4[31] Zhuang R Z, Wang X J, Ma W B, et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat Photonics, 2019, 13, 602 doi: 10.1038/s41566-019-0466-7[32] Zhang Y X, Liu Y C, Xu Z, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat Commun, 2020, 11, 2304 doi: 10.1038/s41467-020-16034-w[33] Chen M M, Shan X, Geske T, et al. Manipulating ion migration for highly stable light-emitting diodes with single-crystalline organometal halide perovskite microplatelets. ACS Nano, 2017, 11, 6312 doi: 10.1021/acsnano.7b02629[34] Nguyen V C, Katsuki H, Sasaki F, et al. Single-crystal perovskite CH3NH3PbBr3 prepared by cast capping method for light-emitting diodes. Jpn J Appl Phys, 2018, 57, 04FL10 doi: 10.7567/JJAP.57.04FL10[35] Chen H, Lin J, Kang J, et al. Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes. Sci Adv, 2020, 6, eaay4045 doi: 10.1126/sciadv.aay4045 -
Proportional views