Citation: |
Zhimin Fang, Lixiu Zhang, Shengzhong (Frank) Liu, Liming Ding. Organic ammonium halides enhance the performance of Pb–Sn perovskite solar cells[J]. Journal of Semiconductors, 2022, 43(12): 120202. doi: 10.1088/1674-4926/43/12/120202
****
Zhimin Fang, Lixiu Zhang, Shengzhong (Frank) Liu, Liming Ding. 2022: Organic ammonium halides enhance the performance of Pb–Sn perovskite solar cells. Journal of Semiconductors, 43(12): 120202. doi: 10.1088/1674-4926/43/12/120202
|
Organic ammonium halides enhance the performance of Pb–Sn perovskite solar cells
doi: 10.1088/1674-4926/43/12/120202
More Information-
References
[1] Fang Z, Zeng Q, Zuo C, et al. Perovskite-based tandem solar cells. Sci Bull, 2021, 66, 621 doi: 10.1016/j.scib.2020.11.006[2] Zhang L, Pan Y, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203[3] Zhao D, Ding L. All-perovskite tandem structures shed light on thin-film photovoltaics. Sci Bull, 2020, 65, 1144 doi: 10.1016/j.scib.2020.04.013[4] Lin R, Xiao K, Qin Z, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn (II) oxidation in precursor ink. Nat Energy, 2019, 4, 864 doi: 10.1038/s41560-019-0466-3[5] Xiao K, Lin R, Han Q, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat Energy, 2020, 5, 870 doi: 10.1038/s41560-020-00705-5[6] Han Q, Wei Y, Lin R, et al. Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb-Sn low-bandgap perovskite solar cells. Sci Bull, 2019, 64, 1399 doi: 10.1016/j.scib.2019.08.002[7] Hao F, Tan H, Jin Z, et al. Toward stable and efficient Sn-containing perovskite solar cells. Sci Bull, 2020, 65, 786 doi: 10.1016/j.scib.2020.02.028[8] He R, Zuo C, Ren S, et al. Low-bandgap Sn-Pb perovskite solar cells. J Semicond, 2021, 42, 060202 doi: 10.1088/1674-4926/42/6/060202[9] Gu S, Lin R, Han Q, et al. Tin and mixed lead-tin halide perovskite solar cells: progress and their application in tandem solar cells. Adv Mater, 2020, 32, 1907392 doi: 10.1002/adma.201907392[10] Chen Q, Luo J, He R, et al. Unveiling roles of tin fluoride additives in high-efficiency low-bandgap mixed tin-lead perovskite solar cells. Adv Energy Mater, 2021, 11, 2101045 doi: 10.1002/aenm.202101045[11] Tong J, Song Z, Kim D H, et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364, 475 doi: 10.1126/science.aav7911[12] Zhou X, Zhang L, Wang X, et al. Highly efficient and stable GABr-modified ideal-bandgap (1.35 eV) Sn/Pb perovskite solar cells achieve 20.63% efficiency with a record small Voc deficit of 0.33 V. Adv Mater, 2020, 32, 1908107 doi: 10.1002/adma.201908107[13] Li C, Pan Y, Hu J, et al. Vertically aligned 2D/3D Pb-Sn perovskites with enhanced charge extraction and suppressed phase segregation for efficient printable solar cells. ACS Energy Lett, 2020, 5, 1386 doi: 10.1021/acsenergylett.0c00634[14] Ma C, Shen D, Ng T W, et al. 2D perovskites with short interlayer distance for high-performance solar cell application. Adv Mater, 2018, 30, 1800710 doi: 10.1002/adma.201800710[15] Ke W, Chen C, Spanopoulos I, et al. Narrow-bandgap mixed lead/tin-based 2D Dion-Jacobson perovskites boost the performance of solar cells. J Am Chem Soc, 2020, 142, 15049 doi: 10.1021/jacs.0c06288[16] Wei M, Xiao K, Walters G, et al. Combining efficiency and stability in mixed tin-lead perovskite solar cells by capping grains with an ultrathin 2D layer. Adv Mater, 2020, 32, 1907058 doi: 10.1002/adma.201907058[17] Yu D, Wei Q, Li H, et al. Quasi-2D bilayer surface passivation for high efficiency narrow bandgap perovskite solar cells. Angew Chem Int Ed, 2022, 61, e202202346 doi: 10.1002/anie.202202346[18] Lee S, Ryu J, Park S S, et al. A self-assembled hierarchical structure to keep the 3D crystal dimensionality in n-butylammonium cation-capped Pb-Sn perovskites. J Mater Chem A, 2021, 9, 27541 doi: 10.1039/D1TA06247F[19] Liang Z, Xu H, Zhang Y, et al. A selective targeting anchor strategy affords efficient and stable ideal-bandgap perovskite solar cells. Adv Mater, 2022, 34, 2110241 doi: 10.1002/adma.202110241[20] Hu S, Otsuka K, Murdey R, et al. Optimized carrier extraction at interfaces for 23.6% efficient tin-lead perovskite solar cells. Energy Environ Sci, 2022, 15, 2096 doi: 10.1039/D2EE00288D[21] Yan N, Ren X, Fang Z, et al. Ligand-anchoring-induced oriented crystal growth for high-efficiency lead-tin perovskite solar cells. Adv Funct Mater, 2022, 32, 202201384 doi: 10.1002/adfm.202201384[22] Lin R, Xu J, Wei M, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603, 73 doi: 10.1038/s41586-021-04372-8 -
Proportional views