J. Semicond. > 2022, Volume 43 > Issue 12 > 122301

ARTICLES

Highly stable Ga-doped ZnO/polystyrene nanocomposite film with narrow-band cyan emission

Sanaz Alamdari1, Majid Jafar Tafreshi2, and Morteza Sasani Ghamsari3,

+ Author Affiliations

 Corresponding author: Majid Jafar Tafreshi, mtafreshi@semnan.ac.ir; Morteza Sasani Ghamsari, msasani@aeoi.org.ir

DOI: 10.1088/1674-4926/43/12/122301

PDF

Turn off MathJax

Abstract: In the present study, a simple method for the preparation of a luminescent flexible gallium doped zinc oxide (GZO)/polystyrene nanocomposite film was developed. The prepared GZO powder was characterized through different optical and structural techniques. The XRD study revealed the existence of a wurtzite structure with no extra oxide peaks. Elemental-mapping, EDX, FTIR and XPS analyses were used to confirm the presence of elements and the several groups present in the structure. Under excitations of UV, the prepared hybrid nanocomposite showed a strong cyan emission with narrow full width at half the maximum value (20 nm) that has not been reported before. X-ray and laser-induced luminescence results of the hybrid film revealed novel blue-green emission at room temperature. The prepared composite film showed a strong scintillation response to ionizing radiation. The strong emissions, very weak deep-level emissions, and low FWHM of composite indicate the desirable optical properties with low-density structural defects in the GZO composite structure. Therefore, the prepared hybrid film can be considered to be a suitable candidate for the fabrication of optoelectronic devices.

Key words: Ga doped ZnOcyan emissionnarrow-band emissionnanocomposite



[1]
You S H, Zhuo Y, Chen Q L, et al. Dual-site occupancy induced broadband cyan emission in Ba2CaB2Si4O14:Ce3+. J Mater Chem C, 2020, 8, 15626 doi: 10.1039/D0TC02625E
[2]
Liu D J, Yun X H, Li G G, et al. Enhanced cyan emission and optical tuning of Ca3Ga4O9:Bi3+ for high-quality full-spectrum white light-emitting diodes. Adv Opt Mater, 2020, 8, 2001037 doi: 10.1002/adom.202001037
[3]
Zhong J S, Li J N, Liu M J, et al. Novel cyan-emitting KBaScSi2O7: Eu2+ phosphors with ultrahigh quantum efficiency and excellent thermal stability for WLEDs. J Am Ceram Soc, 2019, 102, 7376 doi: 10.1111/jace.16644
[4]
Zhou Y N, Zhuang W D, Hu Y S, et al. Cyan-green phosphor (Lu2M)(Al4Si)O12: Ce3+ for high-quality LED lamp: Tunable photoluminescence properties and enhanced thermal stability. Inorg Chem, 2019, 58, 1492 doi: 10.1021/acs.inorgchem.8b03017
[5]
Liang J, Devakumar B, Sun L L, et al. Full-visible-spectrum lighting enabled by an excellent cyan-emitting garnet phosphor. J Mater Chem C, 2020, 8, 4934 doi: 10.1039/D0TC00006J
[6]
Yan C P, Liu Z N, Zhuang W D, et al. YScSi4N6C:Ce3+—a broad cyan-emitting phosphor to weaken the cyan cavity in full-spectrum white light-emitting diodes. Inorg Chem, 2017, 56, 11087 doi: 10.1021/acs.inorgchem.7b01408
[7]
Strobel P, de Boer T, Weiler V, et al. Luminescence of an oxonitridoberyllate: A study of narrow-band cyan-emitting Sr[Be6ON4]: Eu2+. Chem Mater, 2018, 30, 3122 doi: 10.1021/acs.chemmater.8b01256
[8]
Lee S P, Huang C H, Chan T S, et al. New Ce3+-activated thiosilicate phosphor for LED lighting-synthesis, luminescence studies, and applications. ACS Appl Mater Interfaces, 2014, 6, 7260 doi: 10.1021/am500483j
[9]
Fang M H, Ni C C, Zhang X J, et al. Enhance color rendering index via full spectrum employing the important key of cyan phosphor. ACS Appl Mater Interfaces, 2016, 8, 30677 doi: 10.1021/acsami.6b10233
[10]
Dang P P, Liu D J, Wei Y, et al. Highly efficient cyan-green emission in self-activated Rb3RV2O8 (R = Y, Lu) vanadate phosphors for full-spectrum white light-emitting diodes (LEDs). Inorg Chem, 2020, 59, 6026 doi: 10.1021/acs.inorgchem.0c00015
[11]
Li B, Liang J, Sun L L, et al. Cyan-emitting Ba3Y2B6O15:Ce3+, Tb3+ phosphor: A potential color converter for near-UV-excited white LEDs. J Lumin, 2019, 211, 388 doi: 10.1016/j.jlumin.2019.04.001
[12]
Alamdari S, Sasani Ghamsari M. The effects of indium precursors on the structural, optical and electrical properties of nanostructured thin ZnO films. Mater Lett, 2017, 197, 94 doi: 10.1016/j.matlet.2017.03.113
[13]
Sasani Ghamsari M, Alamdari S, Han W, et al. Impact of nanostructured thin ZnO film in ultraviolet protection. Int J Nanomed, 2016, 12, 207 doi: 10.2147/IJN.S118637
[14]
Alamdari S, Ghamsari M S, Ara M H M, et al. Highly concentrated IZO colloidal nanocrystals with blue/orange/red three-colors emission. Mater Lett, 2015, 158, 202 doi: 10.1016/j.matlet.2015.06.001
[15]
Alamdari S, Ghamsari M S, Tafreshi M J. Optimization of Gallium concentration to improve the performance of ZnO nanopowders for nanophotonic applications. Ceram Int, 2020, 46, 4484 doi: 10.1016/j.ceramint.2019.10.175
[16]
Ilican S, Caglar Y, Caglar M. Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method. J Optoelectron Adv Mater, 2008, 10, 2578
[17]
Dutta S, Ganguly B N. Characterization of ZnO nanoparticles grown in presence of Folic acid template. J Nanobiotechnol, 2012, 10, 29 doi: 10.1186/1477-3155-10-29
[18]
Efafi B, Sasani Ghamsari M, Aberoumand M A, et al. Highly concentrated ZnO sol with ultra-strong green emission‏. Mater Lett, 2013, 111, 78 doi: 10.1016/j.matlet.2013.08.035
[19]
Kumar Jangir L, Kumari Y, Kumar A, et al. Structural and morphological study of PS-ZnO nanocomposite membrane. Macromol Symp, 2015, 357, 218 doi: 10.1002/masy.201500020
[20]
Main K, Shimada R, Fujita Y, et al. Energy transfer induced enhancement of localized exciton emission in ZnO nanoparticle-anthracene hybrid films. Phys Status Solidi RRL, 2013, 7, 1089 doi: 10.1002/pssr.201308114
[21]
Wetchakun N, Chaiwichain S, Inceesungvorn B, et al. BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS Appl Mater Interfaces, 2012, 4, 3718 doi: 10.1021/am300812n
[22]
Wang J, Wang Z, Huang B, et al. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. Appl Mater Interfaces, 2012, 4, 4024 doi: 10.1021/am300835p
[23]
Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers‏. Science, 2001, 292, 1897 doi: 10.1126/science.1060367
[24]
Khan F, Ameen S, Song M W, et al. Influence of excitation wavelength on photoluminescence spectra of Al doped ZnO films. J Lumin, 2013, 134, 160 doi: 10.1016/j.jlumin.2012.08.054
[25]
Alvi N H, Ul Hasan K, Nur O, et al. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res Lett, 2011, 6, 130 doi: 10.1186/1556-276X-6-130
[26]
Cheng W D, Wu P, Zou X Q, et al. Study on synthesis and blue emission mechanism of ZnO tetrapodlike nanostructures. J Appl Phys, 2006, 100, 054311 doi: 10.1063/1.2338601
[27]
Vafaee M, Sasani Ghamsari M, Radiman S. Highly concentrated zinc oxide nanocrystals sol with strong blueemission. J Lumin, 2011, 131, 155 doi: 10.1016/j.jlumin.2010.09.042
[28]
Ghamsari M S, Alamdari S, Razzaghi D, et al. ZnO nanocrystals with narrow-band blue emission. J Lumin, 2019, 205, 508 doi: 10.1016/j.jlumin.2018.09.064
[29]
Jin B, Wang D. Strong violet emission from zinc oxide dumbbell-like microrods and nanowires. J Lumin, 2012, 132, 1879 doi: 10.1016/j.jlumin.2012.03.026
[30]
Boukhoubza I, Khenfouch M, Achehboune M, et al. Graphene oxide/ZnO nanorods/graphene oxide sandwich structure: The origins and mechanisms of photoluminescence. J Alloys Compd, 2019, 797, 1320 doi: 10.1016/j.jallcom.2019.04.266
[31]
Zhang D Z, Pan W J, Zhou L J, et al. Room-temperature benzene sensing with Au-doped ZnO nanorods/exfoliated WSe2 nanosheets and density functional theory simulations. ACS Appl Mater Interfaces, 2021, 13, 33392 doi: 10.1021/acsami.1c03884
[32]
Zhang D Z, Yang Z M, Li P, et al. Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles. Sens Actuat B, 2019, 301, 127081 doi: 10.1016/j.snb.2019.127081
[33]
Zhang D Z, Sun Y E, Chuanxing J, et al. Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties. Sens Actuat B, 2017, 253, 1120 doi: 10.1016/j.snb.2017.07.173
[34]
Burešová H, Procházková L, Turtos R M, et al. Preparation and luminescence properties of ZnO: Ga - polystyrene composite scintillator. Opt Express, 2016, 24, 15289 doi: 10.1364/OE.24.015289
Fig. 1.  (Color online) Experimental process.

Fig. 2.  XRD pattern of (a) GZO nanoparticles, (b) GZO/PS hybrid nanocomposite, (c) W-H Plot of the prepared and (d) XPS survey scan of GZO nanoparticles.

Fig. 3.  (Color online) (a–d) Total and partial density of states for Ga:ZnO, and (e) FTIR pattern of GZO hybrid composite.

Fig. 4.  (Color online) (a–c) FESEM images of GZO powders at low and high resolution and (d) size distribution of the prepared powders.

Fig. 5.  (Color online) (a) EDX spectrum of GZO nanopowders and (b) mapping elemental of GZO/PS composite film.

Fig. 6.  (Color online) (a) Plot of band gap energy and (b) photoluminescent spectrum of GZO powders.

Fig. 7.  (Color online) FESEM surface image of GZO/polystyrene nanocomposite.

Fig. 8.  (Color online) PL spectrum of (a) GZO/PS nanocomposite and (b) bare PS composite. (c) ln(I) versus time and mission spectra of GZO/PS sample at different time spaces and (d) excited at different excitation wavelengths.

Fig. 9.  (Color online) (a) Schematic of the experimental setup of CW laser excitation. (b) PL spectrum under excitation at 325 nm. (c) X-ray luminescence. (d) Schematic diagram for the mechanisms of the emission. (e) Height pulse spectra of GZO hybrid film.

Fig. 10.  (Color online) (a, b) The relative PL intensity of composite depending on time, after 3 days of water immersion.

[1]
You S H, Zhuo Y, Chen Q L, et al. Dual-site occupancy induced broadband cyan emission in Ba2CaB2Si4O14:Ce3+. J Mater Chem C, 2020, 8, 15626 doi: 10.1039/D0TC02625E
[2]
Liu D J, Yun X H, Li G G, et al. Enhanced cyan emission and optical tuning of Ca3Ga4O9:Bi3+ for high-quality full-spectrum white light-emitting diodes. Adv Opt Mater, 2020, 8, 2001037 doi: 10.1002/adom.202001037
[3]
Zhong J S, Li J N, Liu M J, et al. Novel cyan-emitting KBaScSi2O7: Eu2+ phosphors with ultrahigh quantum efficiency and excellent thermal stability for WLEDs. J Am Ceram Soc, 2019, 102, 7376 doi: 10.1111/jace.16644
[4]
Zhou Y N, Zhuang W D, Hu Y S, et al. Cyan-green phosphor (Lu2M)(Al4Si)O12: Ce3+ for high-quality LED lamp: Tunable photoluminescence properties and enhanced thermal stability. Inorg Chem, 2019, 58, 1492 doi: 10.1021/acs.inorgchem.8b03017
[5]
Liang J, Devakumar B, Sun L L, et al. Full-visible-spectrum lighting enabled by an excellent cyan-emitting garnet phosphor. J Mater Chem C, 2020, 8, 4934 doi: 10.1039/D0TC00006J
[6]
Yan C P, Liu Z N, Zhuang W D, et al. YScSi4N6C:Ce3+—a broad cyan-emitting phosphor to weaken the cyan cavity in full-spectrum white light-emitting diodes. Inorg Chem, 2017, 56, 11087 doi: 10.1021/acs.inorgchem.7b01408
[7]
Strobel P, de Boer T, Weiler V, et al. Luminescence of an oxonitridoberyllate: A study of narrow-band cyan-emitting Sr[Be6ON4]: Eu2+. Chem Mater, 2018, 30, 3122 doi: 10.1021/acs.chemmater.8b01256
[8]
Lee S P, Huang C H, Chan T S, et al. New Ce3+-activated thiosilicate phosphor for LED lighting-synthesis, luminescence studies, and applications. ACS Appl Mater Interfaces, 2014, 6, 7260 doi: 10.1021/am500483j
[9]
Fang M H, Ni C C, Zhang X J, et al. Enhance color rendering index via full spectrum employing the important key of cyan phosphor. ACS Appl Mater Interfaces, 2016, 8, 30677 doi: 10.1021/acsami.6b10233
[10]
Dang P P, Liu D J, Wei Y, et al. Highly efficient cyan-green emission in self-activated Rb3RV2O8 (R = Y, Lu) vanadate phosphors for full-spectrum white light-emitting diodes (LEDs). Inorg Chem, 2020, 59, 6026 doi: 10.1021/acs.inorgchem.0c00015
[11]
Li B, Liang J, Sun L L, et al. Cyan-emitting Ba3Y2B6O15:Ce3+, Tb3+ phosphor: A potential color converter for near-UV-excited white LEDs. J Lumin, 2019, 211, 388 doi: 10.1016/j.jlumin.2019.04.001
[12]
Alamdari S, Sasani Ghamsari M. The effects of indium precursors on the structural, optical and electrical properties of nanostructured thin ZnO films. Mater Lett, 2017, 197, 94 doi: 10.1016/j.matlet.2017.03.113
[13]
Sasani Ghamsari M, Alamdari S, Han W, et al. Impact of nanostructured thin ZnO film in ultraviolet protection. Int J Nanomed, 2016, 12, 207 doi: 10.2147/IJN.S118637
[14]
Alamdari S, Ghamsari M S, Ara M H M, et al. Highly concentrated IZO colloidal nanocrystals with blue/orange/red three-colors emission. Mater Lett, 2015, 158, 202 doi: 10.1016/j.matlet.2015.06.001
[15]
Alamdari S, Ghamsari M S, Tafreshi M J. Optimization of Gallium concentration to improve the performance of ZnO nanopowders for nanophotonic applications. Ceram Int, 2020, 46, 4484 doi: 10.1016/j.ceramint.2019.10.175
[16]
Ilican S, Caglar Y, Caglar M. Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method. J Optoelectron Adv Mater, 2008, 10, 2578
[17]
Dutta S, Ganguly B N. Characterization of ZnO nanoparticles grown in presence of Folic acid template. J Nanobiotechnol, 2012, 10, 29 doi: 10.1186/1477-3155-10-29
[18]
Efafi B, Sasani Ghamsari M, Aberoumand M A, et al. Highly concentrated ZnO sol with ultra-strong green emission‏. Mater Lett, 2013, 111, 78 doi: 10.1016/j.matlet.2013.08.035
[19]
Kumar Jangir L, Kumari Y, Kumar A, et al. Structural and morphological study of PS-ZnO nanocomposite membrane. Macromol Symp, 2015, 357, 218 doi: 10.1002/masy.201500020
[20]
Main K, Shimada R, Fujita Y, et al. Energy transfer induced enhancement of localized exciton emission in ZnO nanoparticle-anthracene hybrid films. Phys Status Solidi RRL, 2013, 7, 1089 doi: 10.1002/pssr.201308114
[21]
Wetchakun N, Chaiwichain S, Inceesungvorn B, et al. BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS Appl Mater Interfaces, 2012, 4, 3718 doi: 10.1021/am300812n
[22]
Wang J, Wang Z, Huang B, et al. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. Appl Mater Interfaces, 2012, 4, 4024 doi: 10.1021/am300835p
[23]
Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers‏. Science, 2001, 292, 1897 doi: 10.1126/science.1060367
[24]
Khan F, Ameen S, Song M W, et al. Influence of excitation wavelength on photoluminescence spectra of Al doped ZnO films. J Lumin, 2013, 134, 160 doi: 10.1016/j.jlumin.2012.08.054
[25]
Alvi N H, Ul Hasan K, Nur O, et al. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res Lett, 2011, 6, 130 doi: 10.1186/1556-276X-6-130
[26]
Cheng W D, Wu P, Zou X Q, et al. Study on synthesis and blue emission mechanism of ZnO tetrapodlike nanostructures. J Appl Phys, 2006, 100, 054311 doi: 10.1063/1.2338601
[27]
Vafaee M, Sasani Ghamsari M, Radiman S. Highly concentrated zinc oxide nanocrystals sol with strong blueemission. J Lumin, 2011, 131, 155 doi: 10.1016/j.jlumin.2010.09.042
[28]
Ghamsari M S, Alamdari S, Razzaghi D, et al. ZnO nanocrystals with narrow-band blue emission. J Lumin, 2019, 205, 508 doi: 10.1016/j.jlumin.2018.09.064
[29]
Jin B, Wang D. Strong violet emission from zinc oxide dumbbell-like microrods and nanowires. J Lumin, 2012, 132, 1879 doi: 10.1016/j.jlumin.2012.03.026
[30]
Boukhoubza I, Khenfouch M, Achehboune M, et al. Graphene oxide/ZnO nanorods/graphene oxide sandwich structure: The origins and mechanisms of photoluminescence. J Alloys Compd, 2019, 797, 1320 doi: 10.1016/j.jallcom.2019.04.266
[31]
Zhang D Z, Pan W J, Zhou L J, et al. Room-temperature benzene sensing with Au-doped ZnO nanorods/exfoliated WSe2 nanosheets and density functional theory simulations. ACS Appl Mater Interfaces, 2021, 13, 33392 doi: 10.1021/acsami.1c03884
[32]
Zhang D Z, Yang Z M, Li P, et al. Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles. Sens Actuat B, 2019, 301, 127081 doi: 10.1016/j.snb.2019.127081
[33]
Zhang D Z, Sun Y E, Chuanxing J, et al. Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties. Sens Actuat B, 2017, 253, 1120 doi: 10.1016/j.snb.2017.07.173
[34]
Burešová H, Procházková L, Turtos R M, et al. Preparation and luminescence properties of ZnO: Ga - polystyrene composite scintillator. Opt Express, 2016, 24, 15289 doi: 10.1364/OE.24.015289
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 997 Times PDF downloads: 70 Times Cited by: 0 Times

    History

    Received: 23 June 2022 Revised: 26 September 2022 Online: Accepted Manuscript: 24 October 2022Uncorrected proof: 26 October 2022Published: 02 December 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Sanaz Alamdari, Majid Jafar Tafreshi, Morteza Sasani Ghamsari. Highly stable Ga-doped ZnO/polystyrene nanocomposite film with narrow-band cyan emission[J]. Journal of Semiconductors, 2022, 43(12): 122301. doi: 10.1088/1674-4926/43/12/122301 ****Sanaz Alamdari, Majid Jafar Tafreshi, Morteza Sasani Ghamsari. 2022: Highly stable Ga-doped ZnO/polystyrene nanocomposite film with narrow-band cyan emission. Journal of Semiconductors, 43(12): 122301. doi: 10.1088/1674-4926/43/12/122301
      Citation:
      Sanaz Alamdari, Majid Jafar Tafreshi, Morteza Sasani Ghamsari. Highly stable Ga-doped ZnO/polystyrene nanocomposite film with narrow-band cyan emission[J]. Journal of Semiconductors, 2022, 43(12): 122301. doi: 10.1088/1674-4926/43/12/122301 ****
      Sanaz Alamdari, Majid Jafar Tafreshi, Morteza Sasani Ghamsari. 2022: Highly stable Ga-doped ZnO/polystyrene nanocomposite film with narrow-band cyan emission. Journal of Semiconductors, 43(12): 122301. doi: 10.1088/1674-4926/43/12/122301

      Highly stable Ga-doped ZnO/polystyrene nanocomposite film with narrow-band cyan emission

      DOI: 10.1088/1674-4926/43/12/122301
      More Information
      • Sanaz Alamdari:received her Ph.D. degree in Physics. She is currently a lecturer in the SemnanUniversity. She has published papers in the field of optoelectronics, optical sensors, and nanostructures.Her current research interest includes semiconductor materials, additive manufacturing technologiesand quantum sensors
      • Majid Jafar Tafreshi:received his Ph.D. degree in Material Science from Anna University. He is currently an associate professor in the faculty of Physics, Semnan University. He focuses on the crystal growth, detectors and nanostructures
      • Morteza Sasani Ghamsari:is an associate professor and senior researcher in the Photonics andQuantum Technologies Research School of Iranian Nuclear Science and Technology. His currentresearch interest includes the nanophotonics and quantum materials for optical applications
      • Corresponding author: mtafreshi@semnan.ac.irmsasani@aeoi.org.ir
      • Received Date: 2022-06-23
      • Revised Date: 2022-09-26
      • Available Online: 2022-10-24

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return