Citation: |
Sanaz Alamdari, Majid Jafar Tafreshi, Morteza Sasani Ghamsari. Highly stable Ga-doped ZnO/polystyrene nanocomposite film with narrow-band cyan emission[J]. Journal of Semiconductors, 2022, 43(12): 122301. doi: 10.1088/1674-4926/43/12/122301
****
Sanaz Alamdari, Majid Jafar Tafreshi, Morteza Sasani Ghamsari. 2022: Highly stable Ga-doped ZnO/polystyrene nanocomposite film with narrow-band cyan emission. Journal of Semiconductors, 43(12): 122301. doi: 10.1088/1674-4926/43/12/122301
|
Highly stable Ga-doped ZnO/polystyrene nanocomposite film with narrow-band cyan emission
DOI: 10.1088/1674-4926/43/12/122301
More Information
-
Abstract
In the present study, a simple method for the preparation of a luminescent flexible gallium doped zinc oxide (GZO)/polystyrene nanocomposite film was developed. The prepared GZO powder was characterized through different optical and structural techniques. The XRD study revealed the existence of a wurtzite structure with no extra oxide peaks. Elemental-mapping, EDX, FTIR and XPS analyses were used to confirm the presence of elements and the several groups present in the structure. Under excitations of UV, the prepared hybrid nanocomposite showed a strong cyan emission with narrow full width at half the maximum value (20 nm) that has not been reported before. X-ray and laser-induced luminescence results of the hybrid film revealed novel blue-green emission at room temperature. The prepared composite film showed a strong scintillation response to ionizing radiation. The strong emissions, very weak deep-level emissions, and low FWHM of composite indicate the desirable optical properties with low-density structural defects in the GZO composite structure. Therefore, the prepared hybrid film can be considered to be a suitable candidate for the fabrication of optoelectronic devices.-
Keywords:
- Ga doped ZnO,
- cyan emission,
- narrow-band emission,
- nanocomposite
-
References
[1] You S H, Zhuo Y, Chen Q L, et al. Dual-site occupancy induced broadband cyan emission in Ba2CaB2Si4O14:Ce3+. J Mater Chem C, 2020, 8, 15626 doi: 10.1039/D0TC02625E[2] Liu D J, Yun X H, Li G G, et al. Enhanced cyan emission and optical tuning of Ca3Ga4O9:Bi3+ for high-quality full-spectrum white light-emitting diodes. Adv Opt Mater, 2020, 8, 2001037 doi: 10.1002/adom.202001037[3] Zhong J S, Li J N, Liu M J, et al. Novel cyan-emitting KBaScSi2O7: Eu2+ phosphors with ultrahigh quantum efficiency and excellent thermal stability for WLEDs. J Am Ceram Soc, 2019, 102, 7376 doi: 10.1111/jace.16644[4] Zhou Y N, Zhuang W D, Hu Y S, et al. Cyan-green phosphor (Lu2M)(Al4Si)O12: Ce3+ for high-quality LED lamp: Tunable photoluminescence properties and enhanced thermal stability. Inorg Chem, 2019, 58, 1492 doi: 10.1021/acs.inorgchem.8b03017[5] Liang J, Devakumar B, Sun L L, et al. Full-visible-spectrum lighting enabled by an excellent cyan-emitting garnet phosphor. J Mater Chem C, 2020, 8, 4934 doi: 10.1039/D0TC00006J[6] Yan C P, Liu Z N, Zhuang W D, et al. YScSi4N6C:Ce3+—a broad cyan-emitting phosphor to weaken the cyan cavity in full-spectrum white light-emitting diodes. Inorg Chem, 2017, 56, 11087 doi: 10.1021/acs.inorgchem.7b01408[7] Strobel P, de Boer T, Weiler V, et al. Luminescence of an oxonitridoberyllate: A study of narrow-band cyan-emitting Sr[Be6ON4]: Eu2+. Chem Mater, 2018, 30, 3122 doi: 10.1021/acs.chemmater.8b01256[8] Lee S P, Huang C H, Chan T S, et al. New Ce3+-activated thiosilicate phosphor for LED lighting-synthesis, luminescence studies, and applications. ACS Appl Mater Interfaces, 2014, 6, 7260 doi: 10.1021/am500483j[9] Fang M H, Ni C C, Zhang X J, et al. Enhance color rendering index via full spectrum employing the important key of cyan phosphor. ACS Appl Mater Interfaces, 2016, 8, 30677 doi: 10.1021/acsami.6b10233[10] Dang P P, Liu D J, Wei Y, et al. Highly efficient cyan-green emission in self-activated Rb3RV2O8 (R = Y, Lu) vanadate phosphors for full-spectrum white light-emitting diodes (LEDs). Inorg Chem, 2020, 59, 6026 doi: 10.1021/acs.inorgchem.0c00015[11] Li B, Liang J, Sun L L, et al. Cyan-emitting Ba3Y2B6O15:Ce3+, Tb3+ phosphor: A potential color converter for near-UV-excited white LEDs. J Lumin, 2019, 211, 388 doi: 10.1016/j.jlumin.2019.04.001[12] Alamdari S, Sasani Ghamsari M. The effects of indium precursors on the structural, optical and electrical properties of nanostructured thin ZnO films. Mater Lett, 2017, 197, 94 doi: 10.1016/j.matlet.2017.03.113[13] Sasani Ghamsari M, Alamdari S, Han W, et al. Impact of nanostructured thin ZnO film in ultraviolet protection. Int J Nanomed, 2016, 12, 207 doi: 10.2147/IJN.S118637[14] Alamdari S, Ghamsari M S, Ara M H M, et al. Highly concentrated IZO colloidal nanocrystals with blue/orange/red three-colors emission. Mater Lett, 2015, 158, 202 doi: 10.1016/j.matlet.2015.06.001[15] Alamdari S, Ghamsari M S, Tafreshi M J. Optimization of Gallium concentration to improve the performance of ZnO nanopowders for nanophotonic applications. Ceram Int, 2020, 46, 4484 doi: 10.1016/j.ceramint.2019.10.175[16] Ilican S, Caglar Y, Caglar M. Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method. J Optoelectron Adv Mater, 2008, 10, 2578[17] Dutta S, Ganguly B N. Characterization of ZnO nanoparticles grown in presence of Folic acid template. J Nanobiotechnol, 2012, 10, 29 doi: 10.1186/1477-3155-10-29[18] Efafi B, Sasani Ghamsari M, Aberoumand M A, et al. Highly concentrated ZnO sol with ultra-strong green emission. Mater Lett, 2013, 111, 78 doi: 10.1016/j.matlet.2013.08.035[19] Kumar Jangir L, Kumari Y, Kumar A, et al. Structural and morphological study of PS-ZnO nanocomposite membrane. Macromol Symp, 2015, 357, 218 doi: 10.1002/masy.201500020[20] Main K, Shimada R, Fujita Y, et al. Energy transfer induced enhancement of localized exciton emission in ZnO nanoparticle-anthracene hybrid films. Phys Status Solidi RRL, 2013, 7, 1089 doi: 10.1002/pssr.201308114[21] Wetchakun N, Chaiwichain S, Inceesungvorn B, et al. BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS Appl Mater Interfaces, 2012, 4, 3718 doi: 10.1021/am300812n[22] Wang J, Wang Z, Huang B, et al. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. Appl Mater Interfaces, 2012, 4, 4024 doi: 10.1021/am300835p[23] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292, 1897 doi: 10.1126/science.1060367[24] Khan F, Ameen S, Song M W, et al. Influence of excitation wavelength on photoluminescence spectra of Al doped ZnO films. J Lumin, 2013, 134, 160 doi: 10.1016/j.jlumin.2012.08.054[25] Alvi N H, Ul Hasan K, Nur O, et al. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res Lett, 2011, 6, 130 doi: 10.1186/1556-276X-6-130[26] Cheng W D, Wu P, Zou X Q, et al. Study on synthesis and blue emission mechanism of ZnO tetrapodlike nanostructures. J Appl Phys, 2006, 100, 054311 doi: 10.1063/1.2338601[27] Vafaee M, Sasani Ghamsari M, Radiman S. Highly concentrated zinc oxide nanocrystals sol with strong blueemission. J Lumin, 2011, 131, 155 doi: 10.1016/j.jlumin.2010.09.042[28] Ghamsari M S, Alamdari S, Razzaghi D, et al. ZnO nanocrystals with narrow-band blue emission. J Lumin, 2019, 205, 508 doi: 10.1016/j.jlumin.2018.09.064[29] Jin B, Wang D. Strong violet emission from zinc oxide dumbbell-like microrods and nanowires. J Lumin, 2012, 132, 1879 doi: 10.1016/j.jlumin.2012.03.026[30] Boukhoubza I, Khenfouch M, Achehboune M, et al. Graphene oxide/ZnO nanorods/graphene oxide sandwich structure: The origins and mechanisms of photoluminescence. J Alloys Compd, 2019, 797, 1320 doi: 10.1016/j.jallcom.2019.04.266[31] Zhang D Z, Pan W J, Zhou L J, et al. Room-temperature benzene sensing with Au-doped ZnO nanorods/exfoliated WSe2 nanosheets and density functional theory simulations. ACS Appl Mater Interfaces, 2021, 13, 33392 doi: 10.1021/acsami.1c03884[32] Zhang D Z, Yang Z M, Li P, et al. Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles. Sens Actuat B, 2019, 301, 127081 doi: 10.1016/j.snb.2019.127081[33] Zhang D Z, Sun Y E, Chuanxing J, et al. Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties. Sens Actuat B, 2017, 253, 1120 doi: 10.1016/j.snb.2017.07.173[34] Burešová H, Procházková L, Turtos R M, et al. Preparation and luminescence properties of ZnO: Ga - polystyrene composite scintillator. Opt Express, 2016, 24, 15289 doi: 10.1364/OE.24.015289 -
Proportional views