Citation: |
Xiaojie Wang, Zhanwei Shen, Guoliang Zhang, Yuyang Miao, Tiange Li, Xiaogang Zhu, Jiafa Cai, Rongdun Hong, Xiaping Chen, Dingqu Lin, Shaoxiong Wu, Yuning Zhang, Deyi Fu, Zhengyun Wu, Feng Zhang. A 4H-SiC semi-super-junction shielded trench MOSFET: p-pillar is grounded to optimize the electric field characteristics[J]. Journal of Semiconductors, 2022, 43(12): 122802. doi: 10.1088/1674-4926/43/12/122802
****
X J Wang, Z W Shen, G L Zhang, Y Y Miao, T G Li, X G Zhu, J F Cai, R D Hong, X P Chen, D Q Lin, S X Wu, Y N Zhang, D Y Fu, Z Y Wu, F Zhang. A 4H-SiC semi-super-junction shielded trench MOSFET: p-pillar is grounded to optimize the electric field characteristics[J]. J. Semicond, 2022, 43(12): 122802. doi: 10.1088/1674-4926/43/12/122802
|
A 4H-SiC semi-super-junction shielded trench MOSFET: p-pillar is grounded to optimize the electric field characteristics
DOI: 10.1088/1674-4926/43/12/122802
More Information
-
Abstract
A 4H-SiC trench gate metal–oxide–semiconductor field-effect transistor (UMOSFET) with semi-super-junction shielded structure (SS-UMOS) is proposed and compared with conventional trench MOSFET (CT-UMOS) in this work. The advantage of the proposed structure is given by comprehensive study of the mechanism of the local semi-super-junction structure at the bottom of the trench MOSFET. In particular, the influence of the bias condition of the p-pillar at the bottom of the trench on the static and dynamic performances of the device is compared and revealed. The on-resistance of SS-UMOS with grounded (G) and ungrounded (NG) p-pillar is reduced by 52% (G) and 71% (NG) compared to CT-UMOS, respectively. Additionally, gate oxide in the GSS-UMOS is fully protected by the p-shield layer as well as semi-super-junction structure under the trench and p-base regions. Thus, a reduced electric-field of 2 MV/cm can be achieved at the corner of the p-shield layer. However, the quasi-intrinsic protective layer cannot be formed in NGSS-UMOS due to the charge storage effect in the floating p-pillar, resulting in a large electric field of 2.7 MV/cm at the gate oxide layer. Moreover, the total switching loss of GSS-UMOS is 1.95 mJ/cm2 and is reduced by 18% compared with CT-UMOS. On the contrary, the NGSS-UMOS has the slowest overall switching speed due to the weakened shielding effect of the p-pillar and the largest gate-to-drain capacitance among the three. The proposed GSS-UMOS plays an important role in high-voltage and high-frequency applications, and will provide a valuable idea for device design and circuit applications. -
References
[1] Shin G, Lee W C. High frequency switching inverter using Si and SiC. J Korean Institute Illumin Electr Instal Eng, 2017, 31, 45[2] Hatakeyama T, Watanabe T, Shinohe T, et al. Impact ionization coefficients of 4H silicon carbide. Appl Phys Lett, 2004, 85, 1380 doi: 10.1063/1.1784520[3] Gao Y, Huang A, Krishnaswami S, et al. Comparison of static and switching characteristics of 1200V 4H-SiC BJT and 1200V Si-IGBT. Conf Rec IAS Annu Meet IEEE Ind Appl Soc, 2006, 1, 325 doi: 10.1109/IAS.2006.256541[4] Hosseini Aghdam G. Comparison of Si and SiC power semiconductor devices in power electronics converters to be used in plug-In hybrid electric vehicles. EPE J, 2012, 22, 20 doi: 10.1080/09398368.2012.11463814[5] Jordan J, Esteve V, Sanchis-Kilders E, et al. A comparative performance study of a 1200 V Si and SiC MOSFET intrinsic diode on an induction heating inverter. IEEE Trans Power Electron, 2013, 29, 2550 doi: 10.1109/TPEL.2013.2282658[6] Nayak P, Hatua K. Parasitic inductance and capacitance-assisted active gate driving technique to minimize switching loss of SiC MOSFET. IEEE Trans Ind Electron, 2017, 64, 8288 doi: 10.1109/TIE.2017.2711512[7] Wang D B, Feng Q Y, Chen X P, et al. Failure analysis and improvement of 60 V power UMOSFET. Microelectron Reliab, 2014, 54, 2782 doi: 10.1016/j.microrel.2014.07.003[8] Juang M H, Chen W T, Ou-Yang C I, et al. Fabrication of trench-gate power MOSFETs by using a dual doped body region. Solid State Electron, 2004, 48, 1079 doi: 10.1016/j.sse.2003.07.007[9] Kim T, Kim K. High breakdown voltage and low on-resistance 4H-SiC UMOSFET with source-trench optimization. ECS J Solid State Sci Technol, 2019, 8, Q147 doi: 10.1149/2.0091908jss[10] Onishi Y, Hashimoto Y. Numerical analysis of specific on-resistance for trench gate superjunction MOSFETs. Jpn J Appl Phys, 2015, 54, 024101 doi: 10.7567/JJAP.54.024101[11] Wang Y, Lan H, Cao F, et al. A novel power UMOSFET with a variable K dielectric layer. Chin Phys B, 2012, 21, 068503 doi: 10.1088/1674-1056/21/6/068503[12] Wang Y, Ma Y C, Hao Y, et al. Simulation study of 4H-SiC UMOSFET structure with p+-polySi/SiC shielded region. IEEE Trans Electron Devices, 2017, 64, 3719 doi: 10.1109/TED.2017.2723502[13] Zou X, Wu Z M, Wang W P, et al. Optimized design of 4H-SiC UMOSFET for high breakdown voltage. Proc SPIE 11567, AOPC 2020: Optical Sensing and Imaging Technology, 2020, 11567, 939 doi: 10.1117/12.2580265[14] Jozi M, Orouji A A, Fathipour M. Control of electric field in 4H-SiC UMOSFET: Physical investigation. Phys E, 2016, 83, 107 doi: 10.1016/j.physe.2016.04.010[15] Roig J, Stefanov E, Morancho F. Thermal behavior of a superjunction MOSFET in a high-current conduction. IEEE Trans Electron Devices, 2006, 53, 1712 doi: 10.1109/TED.2006.876277[16] Chen Y, Liang Y C, Samudra G S, et al. Progressive development of superjunction power MOSFET devices. IEEE Trans Electron Devices, 2008, 55, 211 doi: 10.1109/TED.2007.911344[17] Xia Y, Chen W J, Sun R Z, et al. A superjunction MOSFET with ultralow reverse recovery charge and low switching losses. J Electron Mater, 2021, 50, 6297 doi: 10.1007/s11664-021-09142-w[18] Goh J, Kim K. Low on-resistance 4H-SiC UMOSFET with local floating superjunction. J Comput Electron, 2020, 19, 234 doi: 10.1007/s10825-019-01408-1[19] Saito W, Omura I, Aida S, et al. Semisuperjunction MOSFETs: New design concept for lower on-resistance and softer reverse-recovery body diode. IEEE Trans Electron Devices, 2003, 50, 1801 doi: 10.1109/TED.2003.815126[20] Saxena R S, Kumar M J. Polysilicon spacer gate technique to reduce gate charge of a trench power MOSFET. IEEE Trans Electron Devices, 2012, 59, 738 doi: 10.1109/TED.2011.2176946[21] Wang Y, Liu Y J, Yu C H, et al. A novel trench-gated power MOSFET with reduced gate charge. IEEE Electron Device Lett, 2015, 36, 165 doi: 10.1109/LED.2014.2382112[22] Feng H, Yang W T, Onozawa Y, et al. A new fin p-body insulated gate bipolar transistor with low miller capacitance. IEEE Electron Device Lett, 2015, 36, 591 doi: 10.1109/LED.2015.2426197[23] Kim S G. Fabrication of superjunction trench gate power MOSFETs using BSG-doped deep trench of p-pillar. ETRI J, 2013, 35, 632 doi: 10.4218/etrij.13.1912.0012[24] Huang Q Y, Huang A Q. Hybrid low-frequency switch for bridgeless PFC. IEEE Trans Power Electron, 2020, 35, 9982 doi: 10.1109/TPEL.2020.2978698[25] Huh Y Y, Choi J M, Kim J M, et al. A study on the optimization of deep-trench super junction metal oxide semiconductor field-effect transistor. J Nanoelectron Optoelectron, 2021, 16, 781 doi: 10.1166/jno.2021.3006[26] Saito W, Omura I, Aida S, et al. Over 1000V semi-superjunction MOSFET with ultra-low on-resistance below the Si-limit. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005, 27 doi: 10.1109/ISPSD.2005.1487942[27] Vudumula P, Kotamraju S. Design and optimization of SiC super-junction MOSFET using vertical variation doping profile. IEEE Trans Electron Devices, 2019, 66, 1402 doi: 10.1109/TED.2019.2894650[28] Wang Y, Hu H F, Yu C H, et al. High-performance split-gate enhanced UMOSFET with p-pillar structure. IEEE Trans Electron Devices, 2013, 60, 2302 doi: 10.1109/TED.2013.2260547[29] Kobayashi Y, Kyogoku S, Morimoto T, et al. High-temperature performance of 1.2 kV-class SiC super junction MOSFET. 2019 31st International Symposium on Power Semiconductor Devices and ICs, 2019, 31 doi: 10.1109/ISPSD.2019.8757609[30] Masuda T, Saito Y, Kumazawa T, et al. 0.63 mΩ·cm2/1170 V 4H-SiC super junction V-groove trench MOSFET. 2018 IEEE International Electron Devices Meeting, 2018 doi: 10.1109/IEDM.2018.8614610[31] Okada M, Kyogoku S, Kumazawa T, et al. Superior short-circuit performance of SiC superjunction MOSFET. 2020 32nd International Symposium on Power Semiconductor Devices and ICs, 2020, 70 doi: 10.1109/ISPSD46842.2020.9170126[32] Shen P, Wang Y, Li X J, et al. Improved 4H-SiC UMOSFET with super-junction shield region. Chin Phys B, 2021, 30, 058502 doi: 10.1088/1674-1056/abd740[33] Cha K, Kim K. 3.3 kV 4H-SiC DMOSFET with a source-contacted dummy gate for high-frequency applications. J Semicond, 2021, 42, 062801 doi: 10.1088/1674-4926/42/6/062801[34] Luo X R, Liao T, Wei J, et al. A novel 4H-SiC trench MOSFET with double shielding structures and ultralow gate-drain charge. J Semicond, 2019, 40, 052803 doi: 10.1088/1674-4926/40/5/052803[35] Wei J, Zhang M, Jiang H P, et al. Superjunction MOSFET with dual built-In Schottky diodes for fast reverse recovery: A numerical simulation study. IEEE Electron Device Lett, 2019, 40, 1155 doi: 10.1109/LED.2019.2917556[36] Kang H, Lee J, Lee K, et al. Trench angle: A key design factor for a deep trench superjunction MOSFET. Semicond Sci Technol, 2015, 30, 125008 doi: 10.1088/0268-1242/30/12/125008[37] Wang Y D, Duan B X, Zhang C, et al. AC-SJ VDMOS with ultra‐low resistance. Micro Nano Lett, 2020, 15, 230 doi: 10.1049/mnl.2019.0497[38] Tian R, Ma C, Wu J M, et al. A review of manufacturing technologies for silicon carbide superjunction devices. J Semicond, 2021, 42, 061801 doi: 10.1088/1674-4926/42/6/061801[39] Shen Z W, Zhang F, Yan G G, et al. High-frequency switching properties and low oxide electric field and energy loss in a reverse-channel 4H-SiC UMOSFET. IEEE Trans Electron Devices, 2020, 67, 4046 doi: 10.1109/TED.2020.3005899[40] Kim M, Forbes J J, Hirsch E A, et al. Evaluation of long-term reliability and overcurrent capabilities of 15-kV SiC MOSFETs and 20-kV SiC IGBTs during narrow current pulsed conditions. IEEE Trans Plasma Sci, 2020, 48, 3962 doi: 10.1109/TPS.2020.3030295[41] Appaswamy A, Chakraborty P, Cressler J D. Influence of interface traps on the temperature sensitivity of MOSFET drain-current variations. IEEE Electron Device Lett, 2010, 31, 387 doi: 10.1109/LED.2010.2041892[42] Chen R Z, Wang L X, Jiu N X, et al. Simulation and result analysis of split gate resurf stepped oxide UMOFSET with floating electrode for improved performance. Electronics, 2019, 8, 1553 doi: 10.3390/electronics8121553[43] Yoon J, Kim K. A 3.3 kV 4H-SiC split gate MOSFET with a central implant region for superior trade-off between static and switching performance. J Semicond, 2021, 42, 062803 doi: 10.1088/1674-4926/42/6/062803[44] Chen R Z, Wang L X, Zhang H K, et al. A new split gate resurf stepped oxide UMOSFET structure with high doped epitaxial layer for improving figure of merit (FOM). Appl Sci, 2020, 10, 7895 doi: 10.3390/app10217895[45] Wang Y, Hu H F, Wang L G, et al. Split gate resurf stepped oxide UMOSFET with p-pillar for improved performance. IET Power Electron, 2014, 7, 965 doi: 10.1049/iet-pel.2013.0363[46] Ahmad S S, Narayanan G. Double pulse test based switching characterization of SiC MOSFET. 2017 National Power Electronics Conference, 2017, 319 doi: 10.1109/NPEC.2017.8310478[47] Wang Y, Jiao W L, Hu H F, et al. Split-gate-enhanced power UMOSFET with soft reverse recovery. IEEE Trans Electron Devices, 2013, 60, 2084 doi: 10.1109/TED.2013.2257789[48] Liu Q, Wang Q, Liu H, et al. Low on-resistance 1.2 kV 4H-SiC power MOSFET with Ron, sp of 3.4 mΩ· cm2. J Semicond, 2020, 41, 062801 doi: 10.1088/1674-4926/41/6/062801[49] Han Z, Song G, Bai Y, et al. A novel 4H-SiC MOSFET for low switching loss and high-reliability applications. Semicond Sci Technol, 2020, 35, 085017 doi: 10.1088/1361-6641/ab8fbf[50] Tian K, Hallén A, Qi J W, et al. An improved 4H-SiC trench-gate MOSFET with low ON-resistance and switching loss. IEEE Trans Electron Devices, 2019, 66, 2307 doi: 10.1109/TED.2019.2905636[51] An J J, Hu S D. Heterojunction diode shielded SiC split-gate trench MOSFET with optimized reverse recovery characteristic and low switching loss. IEEE Access7, 2019, 7, 28592 doi: 10.1109/ACCESS.2019.2902246 -
Proportional views