Citation: |
Chaofan Cao, Guixian Xiao, Yao Lu. Humidity sensor based on BiOBr synthesized under ambient condition[J]. Journal of Semiconductors, 2022, 43(12): 124101. doi: 10.1088/1674-4926/43/12/124101
****
Chaofan Cao, Guixian Xiao, Yao Lu. 2022: Humidity sensor based on BiOBr synthesized under ambient condition. Journal of Semiconductors, 43(12): 124101. doi: 10.1088/1674-4926/43/12/124101
|
Humidity sensor based on BiOBr synthesized under ambient condition
doi: 10.1088/1674-4926/43/12/124101
More Information-
Abstract
Flexible humidity sensors are effective portable devices for human respiratory monitoring. However, the current preparation of sensitive materials need harsh terms and the small production output limits their practicability. Here, we report a synthesis method of single-crystal BiOBr nanosheets under room temperature and atmospheric pressure based on a sonochemical strategy. A flexible humidity sensor enabled by BiOBr nanosheets deliver efficient sensing performance, a high humidity sensitivity (Ig/I0 = 550%) with relative humidity from 40% to 100%, an excellent selectivity, and a detection response/recovery time of 11 and 6 s, respectively. The flexible humidity sensor shows a potential application value as a wearable monitoring device for respiratory disease prevention and health monitoring. -
References
[1] Rolfe S. The importance of respiratory rate monitoring. Brit J Nurs, 2019, 28(8), 504 doi: 10.12968/bjon.2019.28.8.504[2] Jonkman A H, De Vries H J, Heunks L M A. Physiology of the respiratory drive in ICU patients: implications for diagnosis and treatment. Crit Care, 2020, 24(1), 1 doi: 10.1186/s13054-019-2683-3[3] Bigatello L, Pesenti A. Respiratory physiology for the anesthesiologist. Anesthesiology, 2019, 130(6), 1064 doi: 10.1097/ALN.0000000000002666[4] McCafferty J. Respiratory heat and moisture loss in health, asthma and chronic obstructive pulmonary disease (COPD). University of Edinburgh, 2006[5] Sylvester K P, Youngs L, Rutter M A, et al. Early respiratory diagnosis: benefits of enhanced lung function assessment. BMJ Open Respir Res, 2021, 8(1), e001012 doi: 10.1136/bmjresp-2021-001012[6] Baldo T A, de Lima L F, Mendes L F, et al. Wearable and biodegradable sensors for clinical and environmental applications. ACS Appl Electron Mater, 2020, 3(1), 68 doi: 10.1021/acsaelm.0c00735[7] Lu Y, Xu K, Zhang L, et al. Multimodal plant healthcare flexible sensor system. ACS Nano, 2020, 14(9), 10966 doi: 10.1021/acsnano.0c03757[8] Li B, Xiao G, Liu F, et al. A flexible humidity sensor based on silk fabrics for human respiration monitoring. J Mater Chem C, 2018, 6(16), 4549 doi: 10.1039/C8TC00238J[9] Peng B, Zhao F, Ping J, et al. Recent Advances in nanomaterial‐enabled wearable sensors: Material synthesis, sensor design, and personal health monitoring. Small, 2020, 16(44), 2002681 doi: 10.1002/smll.202002681[10] Leng X, Wang Y, Wang F. Alcohols assisted hydrothermal synthesis of defect-rich MoS2 and their applications in humidity sensing. Adv Mater Interfaces, 2019, 6(11), 1900010 doi: 10.1002/admi.201900010[11] Al-Sehemi A G, Al-Assiri M S, Kalam A, et al. Sensing performance optimization by tuning surface morphology of organic (D-π-A) dye based humidity sensor. Sens Actuators B, 2016, 231, 30 doi: 10.1016/j.snb.2016.03.004[12] Lu Y, Xu K, Yang M Q, et al. Highly stable Pd/HNb3O8-based flexible humidity sensor for perdurable wireless wearable applications. Nanoscale Horiz, 2021, 6(3), 260 doi: 10.1039/D0NH00594K[13] Wang Y F, Sekine T, Takeda Y, et al. Fully printed PEDOT: PSS-based temperature sensor with high humidity stability for wireless healthcare monitoring. Sci Rep, 2020, 10(1), 1 doi: 10.1038/s41598-019-56847-4[14] Bae Y M, Lee Y H, Kim H S, et al. Polyimide-polyurethane/urea block copolymers for highly sensitive humidity sensor with low hysteresis. J Appl Polym Sci, 2017, 134(24), 44973 doi: 10.1002/app.44973[15] Farahani H, Wagiran R, Hamidon M N. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors, 2014, 14(5), 7881 doi: 10.3390/s140507881[16] An H, Habib T, Shah S, et al. Water sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing. ACS Appl Nano Mater, 2019, 2(2), 948 doi: 10.1021/acsanm.8b02265[17] Leng X, Luo D, Xu Z, et al. Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. Sens Actuators B, 2018, 257, 372 doi: 10.1016/j.snb.2017.10.174[18] Zhu P, Liu Y, Fang Z, et al. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film. Langmuir, 2019, 35(14), 4834 doi: 10.1021/acs.langmuir.8b04259[19] Yang J, Shi R, Lou Z, et al. Flexible smart noncontact control systems with ultrasensitive humidity sensors. Small, 2019, 15(38), 1902801 doi: 10.1002/smll.201902801[20] Wang S, Chen Z, Umar A, et al. Supramolecularly modified graphene for ultrafast responsive and highly stable humidity sensor. J Phys Chem C, 2015, 119(51), 28640 doi: 10.1021/acs.jpcc.5b08771[21] Zhao J, Li N, Yu H, et al. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv Mater, 2017, 29(34), 1702076 doi: 10.1002/adma.201702076[22] Vadivel S, Vanitha M, Muthukrishnaraj A, et al. Graphene oxide–BiOBr composite material as highly efficient photocatalyst for degradation of methylene blue and rhodamine-B dyes. J Water Proc Eng, 2014, 1, 17 doi: 10.1016/j.jwpe.2014.02.003[23] Yu H, Huang H, Xu K, et al. Liquid-phase exfoliation into monolayered BiOBr nanosheets for photocatalytic oxidation and reduction. ACS Sustaine Chem Eng, 2017, 5(11), 10499 doi: 10.1021/acssuschemeng.7b02508[24] Peng Y, Xu J, Liu T, et al. Controlled synthesis of one-dimensional BiOBr with exposed (110) facets and enhanced photocatalytic activity. CrystEngComm, 2017, 19(43), 6473 doi: 10.1039/C7CE01452J -
Proportional views