J. Semicond. > 2022, Volume 43 > Issue 3 > 030202

RESEARCH HIGHLIGHTS

The origin and evolution of Y6 structure

Jiamin Cao1, , Lifei Yi1 and Liming Ding2,

+ Author Affiliations

 Corresponding author: Jiamin Cao, jiamincao@hnust.edu.cn; Liming Ding, ding@nanoctr.cn

DOI: 10.1088/1674-4926/43/3/030202

PDF

Turn off MathJax



[1]
Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27, 1170 doi: 10.1002/adma.201404317
[2]
Xiao Z, Jia X, Li D, et al. 26 mA cm–2 Jsc from organic solar cells with a low-bandgap nonfullerene acceptor. Sci Bull, 2017, 62, 1494 doi: 10.1016/j.scib.2017.10.017
[3]
Xiao Z, Jia X, Ding L, et al. Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull, 2017, 62, 1562 doi: 10.1016/j.scib.2017.11.003
[4]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[5]
Li S, Li C Z, Shi M, et al. New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett, 2020, 5, 1554 doi: 10.1021/acsenergylett.0c00537
[6]
Cui Y, Xu Y, Yao H, et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater, 2021, 33, 2102420 doi: 10.1002/adma.202102420
[7]
Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[8]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[9]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[10]
Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501
[11]
Cheng Y J, Chen C H, Ho Y J, et al. Thieno[3, 2-b]pyrrolo donor fused with benzothiadiazolo, benzoselenadiazolo and quinoxalino acceptors: synthesis, characterization, and molecular properties. Org Lett, 2011, 13, 5484 doi: 10.1021/ol202199v
[12]
Cheng Y J, Ho Y J, Chen C H, et al. Synthesis, photophysical and photovoltaic properties of conjugated polymers containing fused donor-acceptor dithienopyrrolobenzothiadiazole and dithienopyrroloquinoxaline arenes. Macromolecules, 2012, 45, 2690 doi: 10.1021/ma202764v
[13]
Feng L, Yuan J, Zhang Z, et al. Thieno[3, 2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics. ACS Appl Mater Interfaces, 2017, 9, 31985 doi: 10.1021/acsami.7b10995
[14]
Yuan J, Huang T, Cheng P, et al. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat Commun, 2019, 10, 570 doi: 10.1038/s41467-019-08386-9
[15]
Yuan J, Zhang Y, Zhou L, et al. Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high-performance organic solar cells. Adv Mater, 2019, 31, 1807577 doi: 10.1002/adma.201807577
[16]
Wei Q, Liu W, Leclerc M, et al. A-DA′D-A non-fullerene acceptors for high-performance organic solar cells. Sci China Chem, 2020, 63, 1352 doi: 10.1007/s11426-020-9799-4
[17]
Xie L, Zhang Y, Zhuang W, et al. Low-bandgap nonfullerene acceptor based on thieno[3, 2-b]indole core for highly efficient binary and ternary organic solar cells. Chem Eng J, 2022, 427, 131674 doi: 10.1016/j.cej.2021.131674
[18]
Duan C, Ding L. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 2020, 65, 1231 doi: 10.1016/j.scib.2020.04.030
[19]
Yuan J, Zhang C, Chen H, et al. Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells. Sci China Chem, 2020, 63, 1159 doi: 10.1007/s11426-020-9747-9
[20]
Liu S, Yuan J, Deng W, et al. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat Photonics, 2020, 14, 300 doi: 10.1038/s41566-019-0573-5
[21]
Qin J, Chen Z, Bi P, et al. 17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy Environ Sci, 2021, 14, 5903 doi: 10.1039/d1ee02124a
[22]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/3/010502
[23]
Ji X, Xiao Z, Sun H, et al. Polymer acceptors for all-polymer solar cells. J Semicond, 2021, 42, 080202 doi: 10.1088/1674-4926/42/8/080202
[24]
Sun R, Wang W, Yu H, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5, 1548 doi: 10.1016/j.joule.2021.04.007
[25]
Fan Q, Xiao Z, Wang E, et al. Polymer acceptors based on Y6 derivatives for all-polymer solar cells. Sci Bull, 2021, 66, 1950 doi: 10.1016/j.scib.2021.07.002
[26]
Yuan J, Zhang H, Zhang R, et al. Reducing voltage losses in the A-DA′D-A acceptor-based organic solar cells. Chem, 2020, 6, 2147 doi: 10.1016/j.chempr.2020.08.003
Fig. 1.  The origin and evolution of Y6 structure.

[1]
Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27, 1170 doi: 10.1002/adma.201404317
[2]
Xiao Z, Jia X, Li D, et al. 26 mA cm–2 Jsc from organic solar cells with a low-bandgap nonfullerene acceptor. Sci Bull, 2017, 62, 1494 doi: 10.1016/j.scib.2017.10.017
[3]
Xiao Z, Jia X, Ding L, et al. Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull, 2017, 62, 1562 doi: 10.1016/j.scib.2017.11.003
[4]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[5]
Li S, Li C Z, Shi M, et al. New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett, 2020, 5, 1554 doi: 10.1021/acsenergylett.0c00537
[6]
Cui Y, Xu Y, Yao H, et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater, 2021, 33, 2102420 doi: 10.1002/adma.202102420
[7]
Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[8]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[9]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[10]
Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501
[11]
Cheng Y J, Chen C H, Ho Y J, et al. Thieno[3, 2-b]pyrrolo donor fused with benzothiadiazolo, benzoselenadiazolo and quinoxalino acceptors: synthesis, characterization, and molecular properties. Org Lett, 2011, 13, 5484 doi: 10.1021/ol202199v
[12]
Cheng Y J, Ho Y J, Chen C H, et al. Synthesis, photophysical and photovoltaic properties of conjugated polymers containing fused donor-acceptor dithienopyrrolobenzothiadiazole and dithienopyrroloquinoxaline arenes. Macromolecules, 2012, 45, 2690 doi: 10.1021/ma202764v
[13]
Feng L, Yuan J, Zhang Z, et al. Thieno[3, 2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics. ACS Appl Mater Interfaces, 2017, 9, 31985 doi: 10.1021/acsami.7b10995
[14]
Yuan J, Huang T, Cheng P, et al. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat Commun, 2019, 10, 570 doi: 10.1038/s41467-019-08386-9
[15]
Yuan J, Zhang Y, Zhou L, et al. Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high-performance organic solar cells. Adv Mater, 2019, 31, 1807577 doi: 10.1002/adma.201807577
[16]
Wei Q, Liu W, Leclerc M, et al. A-DA′D-A non-fullerene acceptors for high-performance organic solar cells. Sci China Chem, 2020, 63, 1352 doi: 10.1007/s11426-020-9799-4
[17]
Xie L, Zhang Y, Zhuang W, et al. Low-bandgap nonfullerene acceptor based on thieno[3, 2-b]indole core for highly efficient binary and ternary organic solar cells. Chem Eng J, 2022, 427, 131674 doi: 10.1016/j.cej.2021.131674
[18]
Duan C, Ding L. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 2020, 65, 1231 doi: 10.1016/j.scib.2020.04.030
[19]
Yuan J, Zhang C, Chen H, et al. Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells. Sci China Chem, 2020, 63, 1159 doi: 10.1007/s11426-020-9747-9
[20]
Liu S, Yuan J, Deng W, et al. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat Photonics, 2020, 14, 300 doi: 10.1038/s41566-019-0573-5
[21]
Qin J, Chen Z, Bi P, et al. 17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy Environ Sci, 2021, 14, 5903 doi: 10.1039/d1ee02124a
[22]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/3/010502
[23]
Ji X, Xiao Z, Sun H, et al. Polymer acceptors for all-polymer solar cells. J Semicond, 2021, 42, 080202 doi: 10.1088/1674-4926/42/8/080202
[24]
Sun R, Wang W, Yu H, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5, 1548 doi: 10.1016/j.joule.2021.04.007
[25]
Fan Q, Xiao Z, Wang E, et al. Polymer acceptors based on Y6 derivatives for all-polymer solar cells. Sci Bull, 2021, 66, 1950 doi: 10.1016/j.scib.2021.07.002
[26]
Yuan J, Zhang H, Zhang R, et al. Reducing voltage losses in the A-DA′D-A acceptor-based organic solar cells. Chem, 2020, 6, 2147 doi: 10.1016/j.chempr.2020.08.003
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1659 Times PDF downloads: 109 Times Cited by: 0 Times

    History

    Received: 02 November 2021 Revised: Online: Accepted Manuscript: 02 November 2021Uncorrected proof: 04 November 2021Published: 10 March 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jiamin Cao, Lifei Yi, Liming Ding. The origin and evolution of Y6 structure[J]. Journal of Semiconductors, 2022, 43(3): 030202. doi: 10.1088/1674-4926/43/3/030202 ****J M Cao, L F Yi, L M Ding, The origin and evolution of Y6 structure[J]. J. Semicond., 2022, 43(3): 030202. doi: 10.1088/1674-4926/43/3/030202.
      Citation:
      Jiamin Cao, Lifei Yi, Liming Ding. The origin and evolution of Y6 structure[J]. Journal of Semiconductors, 2022, 43(3): 030202. doi: 10.1088/1674-4926/43/3/030202 ****
      J M Cao, L F Yi, L M Ding, The origin and evolution of Y6 structure[J]. J. Semicond., 2022, 43(3): 030202. doi: 10.1088/1674-4926/43/3/030202.

      The origin and evolution of Y6 structure

      DOI: 10.1088/1674-4926/43/3/030202
      More Information
      • Jiamin Cao:got his PhD from National Center for Nanoscience and Technology in 2015 under the supervision of Professor Liming Ding. He was a visiting scholar in Ergang Wang Group at Chalmers University of Technology from Aug. 2018 to Aug. 2019. Now he is an associate professor in Hunan University of Science and Technology. His research focuses on organic functional materials for optoelectronics
      • Lifei Yi:obtained her BS in 2020. Now she is a master student at Hunan University of Science and Technology. Her work focuses on nonfullerene acceptors
      • Liming Ding:got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editor for Journal of Semiconductors
      • Corresponding author: jiamincao@hnust.edu.cnding@nanoctr.cn
      • Received Date: 2021-11-02
      • Published Date: 2022-03-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return